Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

# **Supporting Information**

|                                                       | Page No |
|-------------------------------------------------------|---------|
| Figure S1. <sup>1</sup> H NMR Spectrum of <b>2a</b>   | 2       |
| Figure S2. <sup>13</sup> C NMR Spectrum of <b>2a</b>  | 3       |
| Figure S3. <sup>1</sup> H NMR Spectrum of <b>2b</b>   | 4       |
| Figure S4. <sup>13</sup> C NMR Spectrum of <b>2b</b>  | 5       |
| Figure S5. <sup>1</sup> H NMR Spectrum of <b>2c</b>   | 6       |
| Figure S6. <sup>13</sup> C NMR Spectrum of <b>2c</b>  | 7       |
| Figure S7. <sup>1</sup> H NMR Spectrum of <b>2d</b>   | 8       |
| Figure S8. <sup>13</sup> C NMR Spectrum of <b>2d</b>  | 9       |
| Figure S9. <sup>1</sup> H NMR Spectrum of <b>2e</b>   | 10      |
| Figure S10. <sup>13</sup> C NMR Spectrum of <b>2e</b> | 11      |
| Figure S11. <sup>1</sup> H NMR Spectrum of <b>2f</b>  | 12      |
| Figure S12. <sup>13</sup> C NMR Spectrum of <b>2f</b> | 13      |
| Figure S13. <sup>1</sup> H NMR Spectrum of <b>2g</b>  | 14      |
| Figure S14. <sup>13</sup> C NMR Spectrum of <b>2g</b> | 15      |
| Figure S15. <sup>1</sup> H NMR Spectrum of <b>2h</b>  | 16      |
| Figure S16. <sup>13</sup> C NMR Spectrum of <b>2h</b> | 17      |
| Figure S17. <sup>1</sup> H NMR Spectrum of <b>2i</b>  | 18      |
| Figure S18. <sup>13</sup> C NMR Spectrum of <b>2i</b> | 19      |
| Figure S19. <sup>1</sup> H NMR Spectrum of <b>2j</b>  | 20      |
| Figure S20. <sup>13</sup> C NMR Spectrum of <b>2j</b> | 21      |
| Figure S21. <sup>1</sup> H NMR Spectrum of <b>2k</b>  | 22      |
| Figure S22. <sup>13</sup> C NMR Spectrum of <b>2k</b> | 23      |
| Figure S23. <sup>1</sup> H NMR Spectrum of <b>2l</b>  | 24      |
| Figure S24. <sup>13</sup> C NMR Spectrum of <b>2</b>  | 25      |
| Figure S25. <sup>2</sup> H NMR Spectrum of <b>2a'</b> | 26      |
| Typical procedure for the deoxygenation of amine N-   |         |
| oxides and spectral data                              | 27      |





Figure S2. <sup>13</sup>C NMR Spectrum of 2a





| Acquisition Time (sec) | 5.4657            | Comment           | 5 mm PABBO BB- | 1H Z-GRD Z824801/0109 |                      | Date                  | 16 Oct 2014 16:26:08                    |
|------------------------|-------------------|-------------------|----------------|-----------------------|----------------------|-----------------------|-----------------------------------------|
| Date Stamp             | 16 Oct 2014 16:26 | 5:08              |                | File Name             | \\abies\iBitec-s\par | tages\scbm\SMMCB_RM   | N\Tritium\data\tritium\nmr\SD-py\10\fid |
| Frequency (MHz)        | 400.13            | Nucleus           | 1H             | Number of Transients  | 8                    | Origin                | spect                                   |
| Original Points Count  | 32768             | Owner             | BRUKER         | Points Count          | 32768                | Pulse Sequence        | zg45                                    |
| Receiver Gain          | 114.00            | SW(cyclical) (Hz) | 5995.20        | Solvent               | CHLOROFORM-d         |                       |                                         |
| Spectrum Offset (Hz)   | 2400 0000         | Spectrum Type     | STANDARD       | Sween Width (Hz)      | 5995.02              | Temperature (degree C | 25 400                                  |



# Figure S5. <sup>1</sup>H NMR Spectrum of 2c

| Acquisition Time (sec)                                                                                                                                                                                                                 | 0.6521            | Comment           | 5 mm PABBO BB- | 1H Z-GRD Z824801/0109 |                       | Date 16 Oct 2014 16:43:12                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|----------------|-----------------------|-----------------------|------------------------------------------------------------|
| Date Stamp                                                                                                                                                                                                                             | 16 Oct 2014 16:43 | :12               |                | File Name             | \\abies\iBitec-s\part | tages\scbm\SMMCB_RMN\Tritium\data\tritium\nmr\SD-py\11\fid |
| Frequency (MHz)                                                                                                                                                                                                                        | 100.62            | Nucleus           | 13C            | Number of Transients  | 512                   | Origin spect                                               |
| <b>Original Points Count</b>                                                                                                                                                                                                           | 16384             | Owner             | BRUKER         | Points Count          | 16384                 | Pulse Sequence zgpg30                                      |
| Receiver Gain                                                                                                                                                                                                                          | 2896.30           | SW(cyclical) (Hz) | 25125.63       | Solvent               | CHLOROFORM-d          |                                                            |
| Spectrum Offset (Hz)                                                                                                                                                                                                                   | 11570.4688        | Spectrum Type     | STANDARD       | Sweep Width (Hz)      | 25124.09              | Temperature (degree C) 25.800                              |
| SD-py.011.esp<br>0.9<br>0.9<br>0.9<br>0.6<br>0.6<br>0.5<br>0.5<br>0.4<br>0.3<br>0.4<br>0.3<br>0.2<br>0.1<br>0.1<br>0.2<br>0.1<br>0.2<br>0.1<br>0.2<br>0.2<br>0.1<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 | Vertica           | IScaleFactor = 1  |                | 20 112 104 96         | 077.10<br>88 80       | 2c<br>80<br>2c<br>72 64 56 48 40 32 24 16 8 0              |
|                                                                                                                                                                                                                                        |                   |                   |                | Chemical Shift        | (ppm)                 |                                                            |

Figure S6. <sup>13</sup>C NMR Spectrum of 2c





Figure S8. <sup>13</sup>C NMR Spectrum of 2d

| Acquisition Time (sec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4657          | Comment                           | SD-161   | Date                 | 08 Oct 2014 11:    | 36:00                                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------|----------|----------------------|--------------------|----------------------------------------------------------------|--|--|
| Date Stamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08 Oct 2014 11: | 36:00                             |          | File Name            | \\abies\iBitec-s\p | partages\scbm\SMMCB_RMN\Tritium\data\tritium\nmr\SD-361\20\fid |  |  |
| Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 400.13          | Nucleus                           | 1H       | Number of Transients | 16                 | Origin spect                                                   |  |  |
| <b>Original Points Count</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32768           | Owner                             | BRUKER   | Points Count         | 32768              | Pulse Sequence zg45                                            |  |  |
| Receiver Gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 228.10          | SW(cyclical) (Hz)                 | 5995.20  | Solvent              | CHLOROFORM         | l-d                                                            |  |  |
| Spectrum Offset (Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2400.0000       | Spectrum Type                     | STANDARD | Sweep Width (Hz)     | 5995.02            | Temperature (degree C) 23.500                                  |  |  |
| SD-361.020.esp<br>1.0-1<br>0.9-1<br>0.8-1<br>0.8-1<br>0.8-1<br>0.8-1<br>0.8-1<br>0.8-1<br>0.8-1<br>0.8-1<br>0.9-1<br>0.8-1<br>0.9-1<br>0.8-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.9-1<br>0.0 | Verte           | calScaleFactor = 1                |          |                      | <u></u>            |                                                                |  |  |
| 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 2 -7.47 -7.47 -7.47 - 7.28 - 7.28 |          |                      |                    | 2e                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.075.          |                                   |          |                      |                    |                                                                |  |  |
| 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0 7.          | 5 7.0 6.5                         | 6.0      | 5.5 5.0 4.           | 5 4.0              | 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0                                  |  |  |
| Chemical Shift (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                                   |          |                      |                    |                                                                |  |  |



| N Br<br>2f          |                                                                   |     |     | NAME    INN-SD-71-PURE-1H      EXPNO    1      PROCNO    1      Date    20140902      Time    18.11      INSTRUM    spect      PROBHD    5 mm      PULPROG    zg30      TD    54274      SOLVENT    CDC13      NS    11      DS    0      SWH    8223.685 Hz      FUDPES    0 |
|---------------------|-------------------------------------------------------------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                   |     |     | AQ  3.2999091 sec    RG  32    DW  60.800 usec    DE  6.50 usec    TE  297.6 K    D1  1.0000000 sec    TD0  1                                                                                                                                                                 |
|                     |                                                                   |     |     |                                                                                                                                                                                                                                                                               |
| 10 9 8<br> 8 <br> 4 | 2 6<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0. | 5 4 | 3 2 | 1 0 ppm                                                                                                                                                                                                                                                                       |

Figure S11. <sup>1</sup>H NMR Spectrum of 2f



Figure S12. <sup>13</sup>C NMR Spectrum of 2f



Figure S13. <sup>1</sup>H NMR Spectrum of 2g



Figure S14. <sup>13</sup>C NMR Spectrum of 2g



# Figure S15. <sup>1</sup>H NMR Spectrum of 2h

10/00/2010 12:40.14



# Figure S16. <sup>13</sup>C NMR Spectrum of 2h



# Figure S17. <sup>1</sup>H NMR Spectrum of 2i

13/03/2015 12:43:52



13/03/2015 12:53:40



Figure S19. <sup>1</sup>H NMR Spectrum of 2j

13/03/2015 12:54:41

| Acquisition Time (sec)                                                                             | 0.6521          | Comment           | SD-370                                   | Date                 | 15 Oct 2014 15:0    | 02:56                 |                        |                 |        |
|----------------------------------------------------------------------------------------------------|-----------------|-------------------|------------------------------------------|----------------------|---------------------|-----------------------|------------------------|-----------------|--------|
| Date Stamp                                                                                         | 15 Oct 2014 15: | 02:56             |                                          | File Name            | \\abies\iBitec-s\p  | artages\scbm\SMMCB_R  | MN\Tritium\data\tritiu | m\nmr\SD-370\11 | 1\fid  |
| Frequency (MHz)                                                                                    | 100.62          | Nucleus           | 13C                                      | Number of Transients | 400                 | Origin                | spect                  |                 |        |
| Original Points Count                                                                              | 16384           | Owner             | BRUKER                                   | Points Count         | 16384               | Pulse Sequence        | zgpg30                 |                 |        |
| Receiver Gain                                                                                      | 2896.30         | SW(cyclical) (Hz) | 25125.63                                 | Solvent              | CHLOROFORM          | -d                    |                        |                 |        |
| Spectrum Offset (Hz)                                                                               | 11570.4688      | Spectrum Type     | STANDARD                                 | Sweep Width (Hz)     | 25124.09            | Temperature (degree ( | C) 27.000              |                 |        |
| SD-370.011.esp<br>0.9<br>0.8<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7<br>0.7 | Vertic          | alScaleFactor = 1 | nBu<br>nBu <sup>∕N</sup> ∕r<br><b>2j</b> | ı<br>ıBu             |                     | 76.70                 |                        |                 |        |
| 192 18                                                                                             | 4 170 108       | 100 152 144       | 130 128                                  | Chemical S           | 90 88<br>hift (ppm) | 80 72 64              | 00 48 40               | 32 24           | 10 8 0 |



Figure S21. <sup>1</sup>H NMR Spectrum of 2k



Figure S22. <sup>13</sup>C NMR Spectrum of 2k

#### This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

| Acquisition Time (sec)          | 5.4657    | Comment           | SD-505                                                                          | Date                 | 26 Mar 2015 08:3 | 36:32                         |
|---------------------------------|-----------|-------------------|---------------------------------------------------------------------------------|----------------------|------------------|-------------------------------|
| Date Stamp 26 Mar 2015 08:36:32 |           | File Name         | \ables\Bltec-s\partages\scbm\SMMCB_RMN\TRITIUM\DATA\TRITIUM\NMR\SD-505PUR\2\FID |                      |                  |                               |
| Frequency (MHz)                 | 400.13    | Nucleus           | 1H                                                                              | Number of Transients | 8                | Origin spect                  |
| Original Points Count           | 32768     | Owner             | BRUKER                                                                          | Points Count         | 32768            | Pulse Sequence zq45           |
| Receiver Gain                   | 40.30     | SW(cyclical) (Hz) | 5995.20                                                                         | Solvent              | CHLOROFORM-      | d                             |
| Spectrum Offset (Hz)            | 2400.0000 | Spectrum Type     | STANDARD                                                                        | Sweep Width (Hz)     | 5995.02          | Temperature (degree C) 27 000 |





#### This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S24. <sup>13</sup>C NMR Spectrum of 21



#### This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure S25. <sup>2</sup>H NMR Spectrum of 2a'

Chemical Shift (ppm)

### A typical procedure for the deoxygenation of amine *N*-oxides is given for quinoline *N*-oxide:

The AuCNT catalyst (0.4 mol%) aqueous uspension was centrifuged and washed three times with dry THF prior to use. Under N<sub>2</sub>, to a solution of quinoline *N*-oxide (0.1 mmol) in dry THF (1 mL) was added the AuCNT catalyst and dimethylphenylsilane (0.11 mmol). The resulting mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. After completion, water (2 mL) was added and the aqueous phase was extracted with dichloromethane ( $3 \times 5$  mL). The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under vacuum. The crude material was then purified by silica gel column chromatography (cyclohexane/EtOAc, 95:5) to afford quinoline as colorless oil (84% yield).

## Quinoline (2a)

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.95-8.90 (m, 1H), 8.15 (d, *J* = 8.3 Hz, 1H), 8.11 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.71 (td, *J* = 8.1, 1.3 Hz, 1H), 7.54 (td, *J* = 7.9, 1.3 Hz, 1H), 7.38 (dd, *J* = 8.3 Hz, *J* = 4.2 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.5, 148.4, 136.3, 129.6, 129.6, 128.5, 128.0, 126.7, 121.3.

## Isoquinoline (2b)

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.25 (s, 1H), 8.51 (d, *J* = 5.8 Hz, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.68 (t, *J* = 7.9 Hz, 1H), 7.64 (d, *J* = 5.8 Hz, 1H), 7.59 (t, *J* = 7.8 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  152.6, 143.0, 135.9, 130.5, 128.8, 127.8, 127.4, 126.6, 120.7.

#### Pyridine (2c)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.56 (s, 2H), 7.65-7.62 (m, 1H), 7.26-7.23 (m, 2H).

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.6 (2C), 135.9, 123.7 (2C).

# 5-Ethyl-2-methyl pyridine (2d)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.32 (d, *J* = 2.1 Hz, 1H), 7.38 (dd, *J* = 7.9 Hz, *J* = 2.1 Hz, 1H), 7.05 (d, *J* = 7.9 Hz, 1H), 2.58 (q, *J* = 7.6 Hz, 2H), 2.50 (s, 3H), 1.21 (t, *J* = 7.6 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  155.6, 148.7, 136.3, 136.0, 123.0, 25.8, 24.0, 15.6.

## 4-Phenylpyridine (2e)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (s, 2H), 7.64 (d, *J* = 8.0 Hz, 2H), 7.53-7.45 (m, 5H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.0 (2C), 148.5, 138.0, 129.1 (3C), 127.0 (2C), 121.6 (2C).

## 2-Bromopyridine (2f)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30-8.40 (m, 1H), 7.55-7.50 (m, 1H), 7.46-7.44 (m, 1H), 7.26-7.21 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.3, 142.4, 138.6, 128.4, 122.8.

# Mercaptopyridine (2g)

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  13.46 (br s, 1H), 7.60-7.65 (m, 1H), 7.38-7.42 (m, 1H), 7.25-7.30 (m, 1H), 6.72-6.76 (m, 1H).

<sup>13</sup>C NMR (100 MHz, DMSO-  $d_6$ )  $\delta$  177.7, 137.9, 137.5, 133.0, 112.8.

#### Isonicotinic acid (2h)

CO<sub>2</sub>H

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.75 (d, J = 6.0 Hz, 2H), 7.79 (d, J = 6.0 Hz, 2H).

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  166.6, 151.0, 138.5, 123.1.

### Adenosine (2i)

HO  $(100 \text{ MHz}, \text{DMSO-d}_6) \delta 8.33 \text{ (s, 1H)}, 8.12 \text{ (s 1H)}, 7.33 \text{ (s, 2H)}, 5.86 \text{ (d, } J = 6 \text{ Hz}, 1\text{ H}), 5.44-5.39 \text{ (m, 2H)}, 5.17 \text{ (d, } J = 4.4 \text{ Hz}, 1\text{ H}), 4.59 \text{ (q, } J = 5.9 \text{ Hz}, 1\text{ H}), 4.12 \text{ (q, 4.1 Hz, 1H)}, 3.94 \text{ (q, } J = 3.2 \text{ Hz}, 1\text{ H}), 3.67 \text{ (m, 1H)}, 3.53 \text{ (m, 1H)}.$  $(100 \text{ MHz}, \text{DMSO-d}_6) \delta 156.6, 152.8, 149.5, 140.3, 119.8, 88.3, 86.3, 73.8, 71.1, 62.1.$ 

## N-Methyl morpholine (2j)

 $-N \longrightarrow O^{-1}H NMR (400 MHz, CDCl_3) \delta 3.58 (s, 4H), 2.28 (s, 4H), 2.16 (s, 3H).$   $^{-13}C NMR (100 MHz, CDCl_3) \delta 66.9 (2C), 55.4 (2C), 46.4.$ 

### Tri-*n*-butylamine (2k)

<sup>*n*Bu</sup> <sub>*n*Bu</sub> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.40 (t, *J* = 7.6 Hz, 6H), 1.45-1.38 (m, 6H), 1.28 (m, 6H), 0.91 (t, *J* = 7.4 Hz, 9H). <sup>*n*Bu</sub> <sup>*n*</sup><sub>*n*Bu</sub> <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  53.8 (3C), 29.1 (3C), 20.7 (3C), 14.0 (3C).</sup>

#### N,N-dimethyl-1-phenylmethanamine (2l)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.24 (m, 5H), 3.43 (s, 2H), 2.52 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  138.8, 129.1 (2C), 128.2 (2C), 127.0, 64.4, 45.3 (2C).