Supporting Information

*m*CPBA-mediated metal-free intramolecular aminohydroxylation and dioxygenation of unfunctionalized olefins

Gong-Qing Liu,^[a]Lin Li,^[a] Lili Duan^[a]and Yue-Ming Li^{*[a,b]}

^a College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China

^b CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China *E-mail: ymli@nankai.edu.cn*

Table of Contents

1. General information	1
2. General procedures for aminohydroxylation and dioxygenation	1
3. Compounds characterization	1
4. Refluxing of epoxide in DCE	9
5. Scale-up of the reaction	10
6. Derivatization of 2a	10
7. ORTEP drawing of 2s and 9a	12
8. References	22
9. Copies of NMR	22

1. General information

Reagents were used as received without further purification unless otherwise specified. Solvents were dried and distilled prior to use. Reactions were monitored with thin layer chromatography using silica gel GF₂₅₄ plates. Organic solutions were concentrated in *vacuo* using a rotary evaporator. Flash column chromatography was performed using silica gel (200–300 meshes). Petroleum ether used had a boiling point range of 60–90 °C. Melting points were measured on a digital melting point apparatus without correction of the thermometer. Nuclear magnetic resonance spectra were recorded at ambient temperature (unless otherwise stated) at 400 MHz (100 MHz for ¹³C) in CDCl₃. Chemical shifts are reported in ppm (δ) using TMS as internal standard, and spin–spin coupling constants (*J*) are given in Hz. High resolution mass spectrometry (HRMS) analyses were carried out on IonSpec 7.0T FTICR HR-ESI-MS.

Substrates **1a–1u** and **1w** were prepared according to our previous works.¹ Substrates **1v** were synthesized according to Takaki's method.² Substrates **8a-8f** were synthesized according to Waser's method.³

2. General procedures for aminohydroxylation and dioxygenation

In a 100 mL round-bottomed flask, alkenylamine (0.5mmol), *m*CPBA(0.6mmol) were added in dry CH_2Cl_2 (20 mL). The resulting mixture was stirred at room temperature for a given time. Then CH_2Cl_2 (10 mL) was added and the mixture was washed with aqueous Na₂S₂O₃ and aqueous NaHCO₃, dried with MgSO₄, and concentrated to give crude residue, which was purified by flash column chromatography to give the corresponding products.

3. Compounds characterization

(4,4-Dimethyl-1-tosylpyrrolidin-2-yl)methanol(2a). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.68 – 7.66 (m, 2H), 7.27 – 7.25 (m, 2H), 3.73 (dd, *J* = 11.9, 3.1 Hz, 1H), 3.66 (dd, *J* = 11.9, 5.1 Hz, 1H), 3.59 – 3.52 (m, 1H), 3.26 (brs, 1H), 3.14 (d, *J* = 10.8 Hz, 1H), 3.06 (d, *J* = 10.8 Hz, 1H), 2.35 (d, *J* = 7.8 Hz, 3H), 1.64 – 1.47 (m, 2H), 0.95 (s, 3H), 0.36 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 143.8, 134.1, 129.7, 127.6, 65.9, 62.4, 62.3, 43.3, 36.9, 26.1, 25.7, 21.6. The NMR data are in accordance with those reported in the previous literature.⁴

(4,4-Dimethyl-1-(2-nitrophenylsulfonyl)pyrrolidin-2-yl)methanol(2b). Colorless oil.¹H NMR (400 MHz, CDCl₃) $\delta = 8.01$ (d, J = 7.3 Hz, 1H), 7.64 (p, J = 8.0 Hz, 2H), 7.54 (d, J = 7.3 Hz, 1H), 4.04 (dd, J = 9.9, 6.3 Hz, 1H), 3.72 (dd, J = 11.9, 2.7 Hz, 1H), 3.54 (dd, J = 11.9, 4.0 Hz, 1H), 3.41 (t, J = 15.2 Hz, 1H), 3.07 (d, J = 10.7 Hz, 1H), 2.40 (brs, 1H), 1.80 – 1.58 (m, 2H), 1.05 – 0.95 (m, 3H), 0.72 (s, 3H).¹³C NMR (100 MHz, CDCl₃) $\delta = 148.1$, 133.8, 132.2, 131.7, 130.7, 123.9, 64.6, 62.1, 61.9, 42.8, 37.7, 25.4.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₈N₂O₅S, 315.1015; found: 315.1012.

(4,4-Dimethyl-1-(methylsulfonyl)pyrrolidin-2-yl)methanol(2c). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 3.86 – 3.77 (m, 1H), 3.68 (dd, *J* = 11.7, 3.4 Hz, 1H), 3.58 (dd, *J* = 11.7, 5.2 Hz, 1H), 3.19 (d, *J* = 10.4 Hz, 1H), 3.18 (brs, 1H), 3.08 (d, *J* = 10.4 Hz, 1H), 2.87 (s, 3H), 1.80 (dd, *J* = 12.7, 7.5 Hz, 1H), 1.61 (dd, *J* = 12.7, 8.9 Hz, 1H), 1.06 (s, 3H), 1.02 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 65.4, 61.9, 61.8, 43.1, 37.5, 37.1, 26.1, 26.0.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₈H₁₇NO₃S, 208.1007; found: 208.1003.

(4,4-Diphenyl-1-tosylpyrrolidin-2-yl)methanol(2d). Colorless oil.¹HNMR (400 MHz, CDCl₃) δ = 7.45 (d, *J* = 8.3 Hz, 2H), 7.18 – 6.90 (m, 12H), 4.19 (d, *J* = 10.6 Hz, 1H), 3.90(d, *J* = 10.6 Hz, 1H), 3.67 – 3.64 (m, 1H), 3.59 – 3.47 (m, 2), 3.05 (brs, 1H), 2.69 (dd, *J* = 12.3, 7.5 Hz, 1H), 2.38 (dd, *J* = 13.0, 7.5 Hz, 1H), 2.28 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 145.3, 144.3, 143.6, 134.0, 129.7, 128.6, 128.6, 127.3, 126.6, 126.6, 126.4, 126.3, 65.4, 61.7, 59.7, 52.2, 40.8, 21.5.The NMR data are in accordance with those reported in the previous literature.⁵

(1-(4-Nitrophenylsulfonyl)-4,4-diphenylpyrrolidin-2-yl)methanol(2e). White solid, Mp=155-156 °C.¹H NMR (400 MHz, CDCl₃) δ =7.96 – 7.94 (m, 2H), 7.62 – 7.58 (m, 2H), 7.22 – 6.85 (m, 10H), 4.20 (q, *J* = 11.1 Hz, 2H), 3.77 – 3.70 (m, 3H),, 2.95 (s, 1H), 2.94 – 2.90 (m, 1H), 2.34 (dd, *J* = 13.3, 8.9 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 148.7, 143.9, 142.4, 142.0, 127.7, 127.6, 126.9, 125.8, 125.6, 125.4, 125.3, 123.0, 64.3, 61.1, 59.9, 51.5, 38.9.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₂₂N₂O₅S, 439.1328; found: 439.1323.

(4,4-Diphenyl-1-(phenylsulfonyl)pyrrolidin-2-yl)methanol(2f). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.64 – 7.55 (m, 2H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 2H), 7.18 (dd, *J* = 9.8, 5.2 Hz, 2H), 7.15 – 7.08 (m, 3H), 7.03 – 6.91 (m, 5H), 4.20 (d, *J* = 10.6 Hz, 1H), 3.98 (dd, *J* = 10.6, 0.9 Hz, 1H), 3.70 – 3.62 (m, 1H), 3.59 – 3.55 (m, 2H), 2.85 (t, *J* = 6.6 Hz, 1H), 2.73 – 2.67 (m, 1H), 2.42 (dd, *J* = 13.0, 7.6 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 144.1, 143.2, 136.2, 131.7, 128.1, 127.6, 127.6, 126.2, 125.7, 125.6, 125.5, 125.3, 64.3, 60.7, 58.7, 51.1, 39.9.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₂₃NO₃S, 394.1477; found: 394.1478.

(1-Tosylindolin-2-yl)methanol(2g). Colorless oil.¹H NMR (400 MHz, CDCl₃) $\delta = 7.63 - 7.60$ (m, 2H), 7.46 - 7.44 (m, 2H),, 7.18 - 7.12 (m, 1H), 7.09 (d, J = 8.1 Hz, 2H), 7.01 - 6.92 (m, 2H), 4.22 (td, J = 9.1, 5.6 Hz, 1H), 3.65 (d, J = 5.6 Hz, 2H), 2.72 (dd, J = 16.4, 9.7 Hz, 1H), 2.57 (dd, J = 16.4, 2.9 Hz, 1H), 2.46 (brs, 1H), 2.27 (s, 3H).¹³C NMR (100 MHz, CDCl₃) $\delta = 143.2$, 1403, 133.3, 131.0, 128.7, 126.8, 126.1, 124.1, 124.0, 116.6, 64.5, 62.5, 30.2, 20.5.The NMR data are in accordance with those reported in the previous literature.⁶

(5-Methoxy-1-tosylindolin-2-yl)methanol(2h). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.52 – 7.49 (m, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.09 (d, *J* = 8.1 Hz, 2H), 6.69 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.51 (d, *J* = 2.2 Hz, 1H), 4.28 – 4.14 (m, 1H), 3.68 (s, 3H), 3.60 (d, *J* = 6.4 Hz, 2H), 2.60 (dd, *J* = 16.5, 9.4 Hz, 1H), 2.48 (brs, 1H), 2.46 (dd, *J* = 16.5, 2.7 Hz, 1H), 2.28 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 157.7, 144.2, 134.5, 134.1, 134.0, 129.7, 127.2, 118.9, 113.0, 110.7, 65.3, 63.9, 55.6, 31.4, 21.6.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd forC₁₇H₁₉NO₄S, 334.1113; found: 334.1111.

(5-Methyl-1-tosylindolin-2-yl)methanol(2i). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.47 (dd, *J* = 17.2, 8.2 Hz, 3H), 7.09 (d, *J* = 8.2 Hz, 2H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.78 (s, 1H), 4.22 - 4.18 (m, 1H), 3.62 (d, *J* = 5.7 Hz, 2H), 2.66 (dd, *J* = 16.3, 9.6 Hz, 1H), 2.49 (dd, *J* = 16.5, 2.7 Hz, 1H), 2.45 (brs, 1H), 2.28 (s, 3H), 2.20 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 144.1, 138.9, 134.9, 134.3, 132.2, 129.7, 128.5,

127.2, 125.7, 117.5, 65.5, 63.7, 31.2, 21.6, 21.0.HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₇H₁₉NO₃S, 318.1164; found: 318.1160.

(5-Chloro-1-tosylindolin-2-yl)methanol(2j). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.50 (t, *J* = 9.0 Hz, 1H), 7.47 – 7.44 (m, 2H), 7.10 (dd, *J* = 13.7, 5.1 Hz, 3H), 6.93 (s, 1H), 4.26 – 4.21 (m, 1H), 3.65 (d, *J* = 5.6 Hz, 2H), 2.70 (dd, *J* = 16.7, 9.6 Hz, 1H), 2.65 (brs, 1H), 2.60 (dd, *J* = 16.7, 3.3 Hz, 1H), 2.28 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 144.6, 140.2, 134.1, 130.3, 129.9, 127.9, 127.1, 125.4, 118.3, 65.4, 63.8, 31.1, 21.6.HRMS–ESI (*m*/*z*): $[M+H]^+$ calcd for C₁₆H₁₆ClNO₃S, 338.0618; found: 338.0614

(5-Fluoro-1-tosylindolin-2-yl)methanol (2k). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.56 (dd, *J* = 8.8, 4.6 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.12 (d, *J* = 5.4 Hz, 2H), 6.85 (td, *J* = 8.8, 2.5 Hz, 1H), 6.68 (dd, *J* = 8.3, 2.3 Hz, 1H), 4.26 – 7.22 (m, 1H), 3.67 – 3.60 (m, 2H), 2.67 (dd, *J* = 16.7, 9.5 Hz, 1H), 2.54 (dd, *J* = 16.7, 2.9 Hz, 1H), 2.32 (s, 1H), 2.30 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 162.8(d, *J* = 242.2 Hz), 144.4, 137.5, 134.4 (d, *J* = 8.8 Hz), 134.0, 129.8, 127.2, 118.8 (d, *J* = 8.7 Hz), 114.5 (d, *J* = 23.4 Hz), 112.3 (d, *J* = 24.0 Hz), 65.4, 63.9, 31.2, 21.6.¹⁹F NMR (376 MHz, CDCl₃) δ = -117.7 (m).HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₁₆FNO₃S, 322.0913; found:322.0911.

2-(Hydroxymethyl)-1-tosylindoline-5-carbonitrile(2l). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.66 – 7.64 (m, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.25 (s, 1H), 7.16 (d, *J* = 8.2 Hz, 2H), 4.31 – 4.28 (m, 1H), 3.76 (dd, *J* = 11.5, 5.0 Hz, 1H), 3.71 (dd, *J* = 11.5, 5.0 Hz, 1H), 2.90 – 2.77 (m, 2H), 2.66 (brs, 1H), 2.30 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 144.7, 144.0, 133.1, 131.9, 131.6, 129.0, 127.9, 125.9, 117.8, 115.6, 106.7, 64.3, 62.7, 29.9, 20.6.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₇H₁₆N₂O₃S, 329.0960 found:329.0953.

(1-Tosylpyrrolidin-2-yl)methanol(2m). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.67 – 7.65 (m, 2H), 7.27 – 7.5 (m, 2H), 3.63 – 3.48 (m, 3H), 3.38 (dt, *J* = 10.7, 6.7 Hz, 1H), 3.18 (dt, *J* = 10.0, 6.7 Hz, 1H), 2.90 (brs, 1H), 2.37 (s, 3H), 1.78 – 1.64 (m, 1H), 1.65 – 1.53 (m, 2H), 1.38 (td, *J* = 12.5, 6.3 Hz, 1H).¹³C NMR (100 MHz, CDCl₃)

 $\delta = 143.8, 133.8, 129.8, 127.6, 65.8, 61.8, 50.0, 28.8, 24.2, 21.6$. The NMR data are in accordance with those reported in the previous literature.⁶

(1-(Phenylsulfonyl)pyrrolidin-2-yl)methanol(2n).Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.79 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 3.70 – 3.54 (m, 3H), 3.40 (dt, *J* = 10.4, 6.2 Hz, 1H), 3.19 (dt, *J* = 10.4, 6.9 Hz, 1H), 2.87 (brs, 1H), 1.81 – 1.68 (m, 1H), 1.69 – 1.54 (m, 2H), 1.43 – 1.33 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 136.8, 133.0, 129.2, 127.6, 65.7, 61.9, 50.0, 28.8, 24.2.The NMR data are in accordance with those reported in the previous literature.⁷

(1-(*o*-Tolylsulfonyl)pyrrolidin-2-yl)methanol(2o). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.85 (d, *J* = 8.2 Hz, 1H), 7.38 (q, *J* = 7.4 Hz, 1H), 7.28 – 7.20 (m, 2H), 3.83 (dq, *J* = 9.6, 4.8 Hz, 1H), 3.61 – 3.51 (m, 2H), 3.28 – 3.23 (m, 2H), 2.69 (brs, 1H), 2.60 (s, 3H), 1.93 – 1.73 (m, 3H), 1.71 – 1.64 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 136.9, 135.6, 131.9, 131.9, 128.8, 125.3, 64.31, 60.1, 48.4, 28.0, 23.5,19.8.HRMS-ESI (*m*/*z*): $[M+H]^+$ calcd for C₁₂H₁₇NO3S, 256.1007; found: 256.1006.

(4,4-Diallyl-1-tosylpyrrolidin-2-yl)methanol(2p). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.69 – 7.65 (m, 2H), 7.28 – 7.26 (m, 2H), 5.62 – 5.59 (m, 1H), 5.48 – 5.36 (m, 2H), 4.99 (dd, *J* = 12.3, 10.0 Hz, 1H), 4.89 (d, *J* = 10.0 Hz, 1H), 4.66 (d, *J* = 16.9 Hz, 1H), 3.74 (dd, *J* = 9.7, 6.9 Hz, 1H), 3.68 – 3.61 (m, 1H), 3.56 – 3.47 (m, 1H), 3.20 – 3.08 (m, 3H), 2.36 (s, 3H), 2.02 (d, *J* = 7.5 Hz, 2H), 1.69 (dd, *J* = 13.0, 7.5 Hz, 1H), 1.57 – 1.49 (m, 2H), 1.32 (dd, *J* = 14.1, 8.0 Hz, 1H).¹³C NMR (100MHz, CDCl₃) δ = 142.9, 133.1, 132.5, 132.1, 128.8, 126.5, 117.6, 117.5, 64.7, 60.7, 58.2, 41.9, 39.6, 38.2, 37.9, 20.5.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₈H₂₅NO₃S, 336.1633; found: 336.1632.

(2-Tosyl-2-azaspiro[4.4]nonan-3-yl)methanol(2q). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.68 – 7.66 (m, 2H), 7.29 – 7.26 (m, 2H), 3.53 – 7.49 (m, 1H), 3.24 (d, *J* =

10.6 Hz, 2H), 3.17 (brs, 1H), 3.08 (d, J = 10.6 Hz, 1H), 2.37 (s, 3H), 1.72 – 1.32 (m, 8H), 0.87 – 0.78 (m, 1H), 0.75 – 0.58 (m, 1H).¹³C NMR (100 MHz, CDCl₃) $\delta = 143.8$, 133.9, 129.7, 127.6, 66.0, 62.5, 60.7, 42.8, 41.4, 36.5, 36.1, 24.3, 24.3, 21.6.HRMS–ESI (m/z): [M+H]⁺ calcd forC₁₆H₂₃NO₃S, 310.1477; found: 310.1475.

(2-Tosyl-2-azaspiro[4.5]decan-3-yl)methanol(2r). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.69 – 7.67 (m, 2H), 7.26 – 7.24 (m, 2H), 3.71 (dd, *J* = 11.8, 3.2 Hz, 1H), 3.65 (dd, *J* = 11.8, 5.1 Hz, 1H), 3.48 (tdd, *J*= 8.6, 5.1, 3.4 Hz, 1H), 3.35 (brs, 1H), 3.25 (d, *J* = 11.1 Hz, 1H), 3.08 (d, *J* = 11.1 Hz, 1H), 2.35 (s, 3H), 1.66 (dd, *J* = 12.7, 7.4 Hz, 1H), 1.45 (dd, *J* = 12.8, 9.5 Hz, 1H), 1.38 – 1.23 (m, 4H), 1.19 – 1.00 (m, 4H), 0.63 (ddd, *J* = 13.0, 9.0, 3.9 Hz, 1H), 0.54 – 0.42 (m, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 142.8, 133.0, 128.7, 126.5, 64.9, 60.4, 58.5, 40.5, 39.8, 35.2, 32.9, 24.7, 22.7, 21.7, 20.5. The NMR data are in accordance with those reported in the previous literature.⁶

1-(4,4-Diphenyl-1-tosylpyrrolidin-2-yl)ethanol(2s). White solid, mp=180°C, ¹H NMR (400 MHz, CDCl₃) δ = 7.37 – 7.34 (m, 2H), 7.20 – 7.13 (m, 2H), 7.10 – 7.01 (m, 3H), 7.02 – 6.92 (m, 7H), 4.36 (dd, *J* = 10.9, 1.6 Hz, 1H), 4.27 (brs, 1H), 4.00 (d, *J* = 10.9 Hz, 1H), 3.65 – 3.56 (m, 1H), 2.79 – 2.68 (m, 1H), 2.46 (dd, *J* = 13.0, 10.3 Hz, 2H), 2.28 (s, 3H), 1.12 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 144.7, 142.9, 142.1, 134.2, 128.6, 127.5, 127.5, 125.8, 125.5, 125.5, 125.1, 66.2, 64.3, 59.50, 51.2, 36.3, 20.4, 16.9.The NMR data are in accordance with those reported in the previous literature.⁵

2-(4,4-Diphenyl-1-tosylpyrrolidin-2-yl)propan-2-ol (**2t**). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.20 – 7.14 (m, 4H), 7.08 (t, *J* = 7.3 Hz, 1H), 7.00 – 6.81 (m, 9H), 4.81 (s, 1H), 4.53 (dd, *J* = 11.6, 2.1 Hz, 1H), 4.15 (d, *J* = 11.6 Hz, 1H), 3.75 (dd, *J* = 10.5, 6.9 Hz, 1H), 3.06 –3.02 (m, 1H), 2.25 (s, 3H), 1.97 (dd, *J* = 13.6, 10.5 Hz, 1H), 1.28 (s, 3H), 1.17 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 145.0, 142.3, 141.7, 133.3, 128.3, 127.6, 127.5, 125.9, 125.6, 125.5, 125.2, 125.1, 71.8, 68.9, 61.5, 51.0, 40.8, 25.7, 21.4, 20.4.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₂₆H₂₉NO₃S, 436.1946; found: 436.1943.

(4-Phenyl-1-tosylpyrrolidin-2-yl)methanol(2u). (DiastereomerMixtures, dr =60: 40). Colorless oil. Majordiastereomer:¹H NMR (400 MHz, CDCl₃) δ = 7.67 – 7.65 (m, 2H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.20 – 7.08 (m, 5H), 3.81 (dd, *J* = 15.6, 7.4 Hz, 2H), 3.76 – 3.63 (m, 2H), 3.50 – 3.39 (m, 1H), 2.94 (brs, 1H), 2.93 (t, *J* = 9.9 Hz, 1H), 2.35 (s, 3H), 2.08 (dd, *J* = 12.7, 6.5 Hz, 1H), 1.67 (dt, *J* = 20.5, 10.3 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ = 144.0, 139.7, 133.2, 129.9, 128.7, 127.8, 127.0, 126.9, 66.1, 61.6, 55.9, 41.9, 35.7, 21.6.The NMR data are in accordance with those reported in the previous literature.⁶

(2,7-Ditosyl-2,7-diazaspiro[4.4]nonane-3,8-diyl)dimethanol(2v).

(DiastereomerMixtures, dr =2 : 1: 1). Colorless oil.Majordiastereomer:¹H NMR (400 MHz, CDCl₃) δ = 7.56 – 7.52 (m, 4H), 7.30 – 7.24 (m, 4H), 3.69 – 3.55 (m, 2H), 3.49 – 3.37 (m, 4H), 2.98 (brs, 2H), 2.74 (d, *J* = 10.8 Hz, 2H), 2.52 (d, *J* = 10.8 Hz, 2H), 2.45 (s, 6H), 1.87 (dd, *J* = 13.1, 8.6 Hz, 2H), 1.66 (dd, *J* = 12.9, 6.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 145.1, 144.5, 129.9, 127.7, 65.2, 61.3, 57.9, 46.3, 38.5, 21.7.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₂₃H₃₀N2O₆S₂ 495.1624; found:495.1615.

N-(5-(Hydroxymethyl)-3,3-dimethyldihydrofuran-2(3H)-ylidene)benzenesulfona mide(9a). White solid, mp=77-79 °C.¹H NMR (400 MHz, CDCl₃) δ = 7.98 – 7.82 (m, 2H), 7.55 – 7.47 (m, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 4.82 – 4.68 (m, 1H), 3.81 (d, *J* = 12.7 Hz, 1H), 3.61 – 3.49 (m, 1H), 3.31 (brs, 1H), 1.99 – 1.84 (m, 2H), 1.21 (s, 3H), 1.20 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 180.7, 141.2, 132.7, 128.6, 127.2, 85.2, 62.7, 44.7, 37.6, 26.1, 25.4.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₃H₁₇NO₄S, 284.0957; found:284.0957.

N-(5-(Hydroxymethyl)-3,3-dimethyldihydrofuran-2(3H)-ylidene)-4-methylbenze nesulfonamide(9b).White solid, mp=131-132°C.¹H NMR (400 MHz, CDCl₃) δ = 7.80 – 7.78(m, 2H), 7.23 – 7.20 (m, 2H), 4.76 – 4.68 (m, 1H), 3.84 (dd, *J* = 12.9, 2.0 Hz, 1H), 3.51 (dd, *J* = 12.9, 4.1 Hz, 1H), 3.17 (brs, 1H), 2.34 (s, 3H), 1.93 (d, *J* = 8.1 Hz, 2H), 1.21 (s, 3H), 1.20 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 180.4, 143.5, 138.2, 129.2, 127.3, 85.1, 62.7, 44.6, 37.6, 26.1, 25.4, 21.6.HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₄H₁₉NO₄S, 298.1113; found:298.1111.

N-(5-(Hydroxymethyl)-3,3-dimethyldihydrofuran-2(3H)-ylidene)-2-methylbenze nesulfonamide(9c). White solid, mp=94-95°C.¹H NMR (400 MHz, CDCl₃) δ = 8.01 – 7.91 (m, 1H), 7.37 (td, *J* = 7.5, 1.2 Hz, 1H), 7.28 – 7.19 (m, 2H), 4.75 – 4.70(m, 1H), 3.77 (d, *J* = 12.7 Hz, 1H), 3.48 (d, *J* = 12.4 Hz, 1H), 3.18 (s, 1H), 2.58 (s, 3H), 1.94 (d, *J* = 8.1 Hz, 2H), 1.22 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ = 180.4, 139.7, 137.6, 132.7, 132.1, 128.5, 125.7, 84.9, 62.6, 44.6, 37.5, 26.1, 25.5, 20.4.HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₄H₁₉NO₄S, 298.1113; found:298.1113.

N-(3-(Hydroxymethyl)-2-oxaspiro[4.5]decan-1-ylidene)-4-methylbenzenesulfona mide(9d). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 7.78 – 7.76 (m, 2H), 7.22– 7.20(m, 2H),, 4.72 – 4.68 (m, 1H), 3.81 (dd, *J* = 12.8, 2.5 Hz, 1H), 3.55 (brs, 1H), 3.52 (dd, *J* = 12.8, 4.3 Hz, 1H), 2.33 (s, 3H), 2.15 (dd, *J* = 12.8, 6.9 Hz, 1H), 1.79 (dd, *J* = 12.7, 9.6 Hz, 1H), 1.72 – 1.59 (m, 3H), 1.54 – 1.41 (m, 4H), 1.29 – 1.05 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 180.4, 143.4, 138.4, 129.2, 127.2, 85.6, 62.9, 49.1, 34.4, 33.2, 33.2, 24.9, 22.2, 22.1, 21.5.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₇H₂₃NO₄S, 338.1426; found:338.1426.

N-(3-(Hydroxymethyl)-2-oxaspiro[4.4]nonan-1-ylidene)-4-methylbenzenesulfona mide(9e). Colorless oil.¹H NMR (400 MHz, CDCl₃) δ =7.80 – 7.77 (m, 2H), 7.23 – 7.21 (m, 2H),, 4.70 – 4.65 (m, 1H), 3.83 (d, *J* = 12.7 Hz, 1H), 3.53 (d, *J* = 9.9 Hz, 1H), 3.05 (brs, 1H), 2.34 (s, 3H), 2.14 – 2.04 (m, 1H), 2.02 – 1.89 (m, 2H), 1.84 – 1.63 (m, 4H), 1.63 – 1.52 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 180.8, 143.3, 138.5, 129.2 127.2, 85.6, 62.8, 54.5, 39.3, 37.8, 37.5, 25.4, 25.2, 21.5.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₆H₂₁NO₄S, 324.1270; found:324.1268.

N-(7-(Hydroxymethyl)-6-oxaspiro[3.4]octan-5-ylidene)-4-methylbenzenesulfona mide(9f). White solid, mp=101-102°C.¹H NMR (400 MHz, CDCl₃) δ = 7.81 – 7.79 (m, 2H), 7.24 – 7.22 (m, 2H), 4.66 – 4.64 (m, 1H), 3.78 (dd, *J* = 12.8, 1.9 Hz, 1H), 3.49 (dd, *J* = 12.8, 3.8 Hz, 1H), 3.15 (brs, 1H), 2.53 – 2.45 (m, 1H), 2.35 (s, 3H), 2.34 – 2.32 (m, 1H), 2.27 (dd, *J* = 13.0, 6.8 Hz, 1H), 2.13 (dd, *J* = 13.0, 8.2 Hz, 1H), 2.04 – 1.87 (m, 4H).¹³C NMR (100 MHz, CDCl₃) δ = 179.2, 143.4, 138.4, 129.2, 127.3, 85.3, 62.8, 48.6, 36.6, 33.4, 30.8, 21.6, 15.9.HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₅H₁₉NO₄S, 310.1113; found:310.1108.

N-(6-(Hydroxymethyl)-5-oxaspiro[2.4]heptan-4-ylidene)-4-methylbenzenesulfona mide(9d). White solid, mp=154-155°C. ¹H NMR (400 MHz, CDCl₃) δ = 7.77 – 7.75 (m, 2H), 7.23 – 7.21 (m, 2H), 4.91 – 4.89 (m, 1H) 3.81 (d, *J* = 12.6 Hz, 1H), 3.57 (dd, *J* = 12.6, 4.1 Hz, 1H), 2.95 (brs, 1H), 2.35 (s, 3H), 2.16 (t, *J* = 7.7 Hz, 2H), 1.36 – 1.24 (m, 2H), 1.07 – 1.00 (m, 2H).¹³C NMR (100 MHz, CDCl₃) δ = 179.1, 143.4, 138.4, 129.2, 127.3, 85.8, 63.3, 30.7, 24.8, 21.6, 19.1, 17.8.HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₄H₁₇NO₄S, 296.0957; found:296.0957.

N-(2,2-dimethyl-4-(oxiran-2-yl)butyl)-4-methylbenzenesulfonamide(**2w**').Oil,¹H NMR (400 MHz, CDCl₃) δ =7.69 – 7.67 (m, 2H), 7.24 – 7.22 (m, 2H), 5.08 (t, *J* = 6.7 Hz, 1H), 2.76 (s, 1H), 2.64 (t, *J* = 4.5 Hz, 1H), 2.61 – 2.52 (m, 2H), 2.39 – 2.32 (m, 4H), 1.45 – 1.22 (m, 4H), 0.77 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ =143.3, 137.0, 129.7, 127.0, 52.7, 52.6, 47.2, 34.9, 33.5, 26.9, 24.9, 24.7, 21.5. HRMS–ESI (*m/z*): [M+H]⁺ calcd for C₁₅H₂₃NO₃S, 298.1477; found:298.1477.

4. Refluxing of epoxide in DCE

N-(2,2-dimethyl-4-(oxiran-2-yl)butyl)-4-methylbenzenesulfonamide (1 mmol) was dissolved in 20 mL of dry DCE in a 50 mL flame-dried round-bottom flask. The mixture was heated for 36 h at 90 °C in an oil bath. Then DCE was removed and almost quantitative epoxide could be recovered.

To 1 mmol of N-(2,2-dimethyl-4-(oxiran-2-yl)butyl)-4-methylbenzenesulfonamide in 20 mL of DCE in a 50 mL flame-dried round-bottom flask was added 2 equiv of NaOH. The resulting mixture was heated for 36 h at 90 °C in an oil bath. The mixture was then filtered, diluted with DCM (20 mL) and was washed with H2O. The organic layer was dried over MgSO4, filtered and concentrated to give crude residue which was purified flash chromatography by column to give 2w. (5,5-dimethyl-1-tosylpiperidin-2-yl)methanol (2w), ¹H NMR (400 MHz, CDCl₃) δ = 7.66 - 7.62 (m, 2H), 7.22 - 7.17 (m, 2H), 3.90 (d, J = 6.5 Hz, 1H), 3.59 (dd, J = 11.2, 7.3 Hz, 1H), 3.49 (dd, J = 11.2, 6.8 Hz, 1H), 3.17 (d, J = 13.2 Hz, 1H), 2.72 (d, J = 13.2 Hz, 1H) 13.2 Hz, 1H), 2.55 (brs, 1H), 2.32 (s, 3H), 1.69 – 1.47 (m, 2H), 1.27 (td, J = 13.3, 4.7 Hz, 1H), 1.20 – 1.09 (m, 1H), 0.79 (s, 3H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃)

δ = 143.0, 138.0, 129.6, 127.0, 59.8, 54.0, 51.9, 32.4, 30.2, 28.5, 23.6, 21.8, 21.5. HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₅H₂₃NO₃S, 298.1477; found: 298.1477.

5. Scale-up of the reaction

In a 100 mL round-bottomed flask were added 2.5 g **1a**, 1.9 g *m*CPBA and dry CH_2Cl_2 (60 mL). The resulting mixture was stirred at room temperature for 24 hours. Then CH_2Cl_2 (20 mL) was added and the mixture was washed with aqueous $Na_2S_2O_3$ and aqueous $NaHCO_3$, dried with MgSO₄, and concentrated to give crude residue, which was purified by flash column chromatography to give **2a** (2.24 g, 84%).

6. Derivatization of 2a

To 1mmol **2a** in 2 mL dry toluene/DMF(9:1) was added diphenylphosphorylazide (DPPA, 2.5mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 2.5mmol) in a 5 mL flame-dried round-bottom flask. The reaction mixture was stirred for 48 h at 50 °C in an oil bath under argon. The reaction mixture was then diluted with H₂O and extracted with CH₂Cl₂. The organic layers were collected dried over anhydrousMgSO₄, and concentrated to give crude residue. The crude product was purified by silica gel flash chromatography to afford **3**.White solid. mp =71°C;¹H NMR (400 MHz, CDCl₃) δ = 7.68 – 7.62 (m, 2H), 7.28 – 7.22 (m, 2H), 3.71 – 3.60 (m, 2H), 3.54 (dt, *J* = 9.3, 5.6 Hz, 1H), 3.08 (q, *J* = 10.8 Hz, 2H), 2.36 (s, 3H), 1.63 (dd, *J* = 7.5, 2.7 Hz, 2H), 0.98 (s, 3H), 0.41 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ = 143.8, 134.6, 129.8, 127.5, 61.6, 59.0, 55.0, 43.8, 37.5, 26.1, 25.6, 21.6; HRMS–ESI (*m*/*z*): [M+H]⁺ calcd for C₁₄H₂₀N₄O₂S, 309.1385 found: 309.1382.

In a 50 mL flask, **2a** (1mmol) was added to the solution of anhydrous Et_2O (10mL). After the mixture was cooled to 0°C, PBr₃ (1mmol) was added dropwise in 10 minutes. The mixture was stirred at room temperature overnight under argon. The mixture was then poured into ice water (50 mL). The organic layer was extracted with CH₂Cl₂. The organic layers were collected dried over anhydrous MgSO₄, and

concentrated to give crude residue. The crude product was purified by silica gel flash chromatography to afford **4**. White solid.mp =94-96°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.66 – 7.64 (m, 2H), 7.28 – 7.24 (m, 2H), 3.86 (dd, *J* = 9.6, 3.0 Hz, 1H), 3.80 (ddd, *J* = 15.9, 8.3, 3.0 Hz, 1H), 3.45 (t, *J* = 9.1 Hz, 1H), 3.10 (q, *J* = 10.9 Hz, 2H), 2.36 (s, 3H), 1.81 (dd, *J* = 12.9, 7.2 Hz, 1H), 1.63 (dd, *J* = 12.9, 8.3 Hz, 1H), 0.98 (s, 3H), 0.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 143.7, 134.9, 129.7, 127.5, 61.9, 60.0, 45.9, 37.5, 37.5, 26.1, 25.8, 21.6. The NMR data are in accordance with those reported in the previous literature.⁸

In a 50 mL flask, TFAA (1.3mmol) was added dropwise to a solution of **2a** (1mmol) and Et₃N (2mmol) in CH₂Cl₂ (10 mL) at 0°C. After stirring for 30 min at 0°C, the reaction mixture was quenched with cold water (10 mL) and extracted with CH₂Cl₂. The organic layers were collected dried over anhydrous MgSO₄, and concentrated to give crude residue. The crude product was purified by silica gel flash chromatography to afford **5**. White solid; mp = 79-80 °C; ¹H NMR (400 MHz, CDCl₃) δ = 7.66 – 7.64 (m, 2H), 7.24 – 7.22 (m, 2H), 4.38 (dd, *J* = 11.0, 3.8 Hz, 1H), 4.12 (dd, *J* = 11.0, 7.1 Hz, 1H), 3.77 (qd, *J* = 7.7, 3.8 Hz, 1H), 3.06 (s, 2H), 2.34 (s, 3H), 1.94 (s, 1H), 1.65 (dd, *J* = 12.8, 7.7 Hz, 3H), 1.53 (dd, *J* = 12.8, 8.1 Hz, 1H), 0.98 (s, 3H), 0.51 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 170.6, 143.5, 134.9, 129.6, 127.4, 66.7, 61.5, 57.8, 43.6, 37.5, 26.3, 25.9, 21.5, 20.8. HRMS–ESI (*m*/*z*): [M+H]⁺calcd for C₁₆H₂₃NO₄S, 326.1426 found: 326.1422.

To a solution of **2a** (1mmol) and PhI(OAc)₂ (2.2 mmol) in a 1:1 mixture (2 mL) of MeCN andH₂Owas added TEMPO (0.1 mmol), and the solution was stirred at room temperature for 12 h. Saturated NaHCO₃ aqueous solution (10 mL) was added to the reaction mixture. The product was basified to pH 10 with 1N NaOH, and washed with AcOEt. The aqueous layer was acidified to pH3 with 1N HCl, extracted with CH₂Cl₂. The organic layers were collected dried over anhydrous MgSO₄, and concentrated to give crude residue. The crude product was purified by silica gel flash chromatography to afford **6**. Colorlessoil.¹H NMR (400 MHz, CDCl₃) δ = 9.96 (s, 1H), 7.718 – 7.69 (m, 2H), 7.27 – 7.25 (m, 2H), 4.22 (t, *J* = 8.1 Hz, 1H), 3.13 (d, *J* = 9.9 Hz, 1H), 3.03 (d, *J* = 9.9 Hz, 1H), 2.35 (s, 3H), 1.93 (dd, *J* = 12.6, 8.3 Hz, 1H), 1.84 (dd, *J* = 12.6, 8.3 Hz, 1H), 1.01 (s, 3H), 0.64 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 177.7, 143.9, 134.6, 129.8, 127.7, 60.7, 60.4, 44.3, 38.9, 25.7, 25.5, 21.6.The NMR data are in accordance with those reported in the previous literature.⁶

To a solution of oxalyl chloride (1.2mmol) in CH₂Cl₂(10 mL) cooled at -78 °C was added dropwise a solution of DMSO (1.1mmol) in CH₂Cl₂ (10 mL). After5 min, a solution of **2a** (1mmol) in CH₂Cl₂ (5 mL) was added. The reaction mixture was then stirred for 30 min at -78 °C and triethylamine (5mmol) was added in one portion. After 10 min at -78 °C, the mixture was allowed to warm to room temperature and diluted with CH₂Cl₂(10 mL). The organic layer was successively washed with saturated aqueous solution of NH₄Cl (20 mL) extracted with CH₂Cl₂. The organic layers were collected dried over anhydrous MgSO₄, and concentrated to give crude residue. The crude product was purified by silica gel flash chromatography to afford 7.Colorless oil.¹H NMR (400 MHz, CDCl₃) δ = 9.64 (d, *J* = 2.9 Hz, 1H), 7.65 – 7.63 (m, 2H), 7.30 – 7.27 (m, 2H), 3.76 (td, *J* = 8.1, 2.9 Hz, 1H), 3.23 (d, *J* = 9.8 Hz, 1H), 2.89 (d, *J* = 9.8 Hz, 1H), 2.37 (s, 3H), 1.74 (dd, *J* = 12.8, 7.6 Hz, 1H), 1.63 (dd, *J* = 12.8, 8.6 Hz, 1H), 0.98 (s, 3H), 0.57 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 200.4, 144.2, 133.3, 129.9, 127.7, 66.4, 61.1, 41.6, 38.5, 26.2, 25.4, 21.6.The NMR data are in accordance with those reported in the previous literature.⁴

7. ORTEP drawing of 2s and 9a

Table 1. Crystal data and structure refinement for 2s

Properties	Data
Empirical	$C_{25}H_{27}NO_3S$
Formula weight	421.54
Temperature	113(2) K
Wavelength	0.71073 A
Cell length a	4.198(3) A
Cell length b	6.0639(12)

Cell length c	25.178(5)
Cell angle alpha	90 deg
Cell angle beta	100.14(3)
Cell angle gamma	90 deg
Cell volume	2133.9(7) A^3
Cell formula units Z	4, 1.312 Mg/m^3
Crystal Size	0.20 x 0.18 x 0.12 mm

Table 2. Atomic coordination and equivalent isotropic displacement parameter

	Х	у	Z	U(eq)
S(1)	856(1)	5392(1)	1087(1)	16(1)
O(1)	876(1)	7765(2)	1095(1)	21(1)
O(2)	26(1)	4244(2)	807(1)	21(1)
O(3)	1676(1)	3570(2)	-285(1)	20(1)
N(1)	1749(1)	4595(2)	816(1)	15(1)
C(1)	1019(1)	4508(2)	1765(1)	16(1)
C(2)	681(1)	2441(2)	1890(1)	20(1)
C(3)	832(1)	1762(3)	2428(1)	22(1)
C(4)	1316(1)	3103(3)	2838(1)	24(1)
C(5)	1638(1)	5163(3)	2698(1)	24(1)
C(6)	1494(1)	5885(3)	2167(1)	21(1)
C(7)	1489(2)	2355(4)	3418(1)	38(1)
C(8)	2678(1)	5734(2)	898(1)	17(1)
C(9)	3418(1)	3884(2)	1058(1)	15(1)
C(10)	2938(1)	2008(2)	685(1)	16(1)
C(11)	1845(1)	2282(2)	632(1)	15(1)
C(12)	1316(1)	1974(2)	50(1)	17(1)
C(13)	1452(1)	-339(2)	-161(1)	24(1)
C(14)	4414(1)	4367(2)	928(1)	17(1)
C(15)	5111(1)	2706(3)	1024(1)	24(1)
C(16)	6020(1)	3028(3)	904(1)	30(1)
C(17)	6260(1)	5015(3)	686(1)	29(1)
C(18)	5585(1)	6677(3)	595(1)	27(1)
C(19)	4668(1)	6355(3)	715(1)	22(1)
C(20)	3519(1)	3397(2)	1666(1)	16(1)
C(21)	3203(1)	1472(2)	1880(1)	20(1)
C(22)	3354(1)	1115(3)	2437(1)	25(1)
C(23)	3816(1)	2685(3)	2787(1)	26(1)
C(24)	4127(1)	4633(3)	2582(1)	26(1)
C(25)	3979(1)	4975(3)	2027(1)	21(1)

S(1)-O(1)	1.4394(11)	C(16)-C(17)	1.391(3)
S(1)-O(2)	1.4426(12)	С(16)-Н(16)	0.9500
S(1)-N(1)	1.6149(13)	C(17)-C(18)	1.382(3)
S(1)-C(1)	1.7653(15)	С(17)-Н(17)	0.9500
O(3)-C(12)	1.4353(17)	C(18)-C(19)	1.401(2)
O(3)-H(3)	0.8400	C(18)-H(18)	0.9500
N(1)-C(8)	1.4722(18)	C(19)-H(19)	0.9500
N(1)-C(11)	1.4906(17)	C(20)-C(21)	1.392(2)
C(1)-C(6)	1.391(2)	C(20)-C(25)	1.400(2)
C(1)-C(2)	1.397(2)	C(21)-C(22)	1.397(2)
C(2)-C(3)	1.396(2)	C(21)-H(21)	0.9500
C(2)-H(2)	0.9500	C(22)-C(23)	1.383(2)
C(3)-C(4)	1.396(2)	C(22)-H(22)	0.9500
C(3)-H(3A)	0.9500	C(23)-C(24)	1.392(2)
C(4)-C(5)	1.396(2)	C(23)-H(23)	0.9500
C(4)-C(7)	1.508(2)	C(24)-C(25)	1.390(2)
C(5)-C(6)	1.388(2)	C(24)-H(24)	0.9500
C(5)-H(5)	0.9500	C(25)-H(25)	0.9500
C(6)-H(6)	0.9500		
C(7)-H(7A)	0.9800	O(1)-S(1)-O(2)	120.08(7)
C(7)-H(7B)	0.9800	O(1)-S(1)-N(1)	106.87(6)
C(7)-H(7C)	0.9800	O(2)-S(1)-N(1)	106.46(7)
C(8)-C(9)	1.541(2)	O(1)-S(1)-C(1)	106.96(7)
C(8)-H(8A)	0.9900	O(2)-S(1)-C(1)	106.45(7)
C(8)-H(8B)	0.9900	N(1)-S(1)-C(1)	109.81(7)
C(9)-C(14)	1.534(2)	C(12)-O(3)-H(3)	109.5
C(9)-C(20)	1.541(2)	C(8)-N(1)-C(11)	110.85(11)
C(9)-C(10)	1.554(2)	C(8)-N(1)-S(1)	123.43(10)
C(10)-C(11)	1.543(2)	C(11)-N(1)-S(1)	122.32(10)
C(10)-H(10A)	0.9900	C(6)-C(1)-C(2)	121.08(14)
C(10)-H(10B)	0.9900	C(6)-C(1)-S(1)	119.02(11)
C(11)-C(12)	1.538(2)	C(2)-C(1)-S(1)	119.90(11)
C(11)-H(11)	1.0000	C(3)-C(2)-C(1)	118.87(14)
C(12)-C(13)	1.523(2)	C(3)-C(2)-H(2)	120.6
C(12)-H(12)	1.0000	C(1)-C(2)-H(2)	120.6
C(13)-H(13A)	0.9800	C(2)-C(3)-C(4)	121.13(15)
C(13)-H(13B)	0.9800	C(2)-C(3)-H(3A)	119.4
C(13)-H(13C)	0.9800	C(4)-C(3)-H(3A)	119.4
C(14)-C(19)	1.392(2)	C(5)-C(4)-C(3)	118.40(14)
C(14)-C(15)	1.404(2)	C(5)-C(4)-C(7)	120.57(16)
C(15)-C(16)	1.391(2)	C(3)-C(4)-C(7)	121.03(16)
C(15)-H(15)	0.9500	C(6)-C(5)-C(4)	121.71(15)

Table 3.Bond lengths

C(6)-C(5)-H(5)	119.1	C(12)-C(13)-H(13B)	109.5
C(4)-C(5)-H(5)	119.1	H(13A)-C(13)-H(13B)	109.5
C(5)-C(6)-C(1)	118.81(15)	С(12)-С(13)-Н(13С)	109.5
C(5)-C(6)-H(6)	120.6	H(13A)-C(13)-H(13C)	109.5
C(1)-C(6)-H(6)	120.6	H(13B)-C(13)-H(13C)	109.5
C(4)-C(7)-H(7A)	109.5	C(19)-C(14)-C(15)	117.72(14)
C(4)-C(7)-H(7B)	109.5	C(19)-C(14)-C(9)	123.95(14)
H(7A)-C(7)-H(7B)	109.5	C(15)-C(14)-C(9)	118.33(13)
C(4)-C(7)-H(7C)	109.5	C(16)-C(15)-C(14)	121.00(15)
H(7A)-C(7)-H(7C)	109.5	С(16)-С(15)-Н(15)	119.5
H(7B)-C(7)-H(7C)	109.5	С(14)-С(15)-Н(15)	119.5
N(1)-C(8)-C(9)	104.37(11)	C(15)-C(16)-C(17)	120.61(16)
N(1)-C(8)-H(8A)	110.9	С(15)-С(16)-Н(16)	119.7
C(9)-C(8)-H(8A)	110.9	С(17)-С(16)-Н(16)	119.7
N(1)-C(8)-H(8B)	110.9	C(18)-C(17)-C(16)	119.05(15)
C(9)-C(8)-H(8B)	110.9	С(18)-С(17)-Н(17)	120.5
H(8A)-C(8)-H(8B)	108.9	С(16)-С(17)-Н(17)	120.5
C(14)-C(9)-C(20)	108.69(12)	C(17)-C(18)-C(19)	120.44(15)
C(14)-C(9)-C(8)	114.60(12)	C(17)-C(18)-H(18)	119.8
C(20)-C(9)-C(8)	109.86(12)	C(19)-C(18)-H(18)	119.8
C(14)-C(9)-C(10)	109.46(12)	C(14)-C(19)-C(18)	121.16(15)
C(20)-C(9)-C(10)	114.44(12)	С(14)-С(19)-Н(19)	119.4
C(8)-C(9)-C(10)	99.72(12)	C(18)-C(19)-H(19)	119.4
C(11)-C(10)-C(9)	107.50(12)	C(21)-C(20)-C(25)	117.85(14)
С(11)-С(10)-Н(10А)	110.2	C(21)-C(20)-C(9)	124.38(13)
C(9)-C(10)-H(10A)	110.2	C(25)-C(20)-C(9)	117.75(13)
С(11)-С(10)-Н(10В)	110.2	C(20)-C(21)-C(22)	120.94(15)
C(9)-C(10)-H(10B)	110.2	C(20)-C(21)-H(21)	119.5
H(10A)-C(10)-H(10B)	108.5	C(22)-C(21)-H(21)	119.5
N(1)-C(11)-C(12)	110.72(12)	C(23)-C(22)-C(21)	120.42(15)
N(1)-C(11)-C(10)	102.75(11)	C(23)-C(22)-H(22)	119.8
C(12)-C(11)-C(10)	112.60(12)	C(21)-C(22)-H(22)	119.8
N(1)-C(11)-H(11)	110.2	C(22)-C(23)-C(24)	119.50(15)
C(12)-C(11)-H(11)	110.2	C(22)-C(23)-H(23)	120.2
C(10)-C(11)-H(11)	110.2	C(24)-C(23)-H(23)	120.2
O(3)-C(12)-C(13)	109.70(12)	C(25)-C(24)-C(23)	119.86(15)
O(3)-C(12)-C(11)	108.29(12)	C(25)-C(24)-H(24)	120.1
C(13)-C(12)-C(11)	111.88(12)	C(23)-C(24)-H(24)	120.1
O(3)-C(12)-H(12)	109.0	C(24)-C(25)-C(20)	121.42(15)
С(13)-С(12)-Н(12)	109.0	С(24)-С(25)-Н(25)	119.3
C(11)-C(12)-H(12)	109.0	C(20)-C(25)-H(25)	119.3
C(12)-C(13)-H(13A)	109.5		

	U11	U22	U33	U23	U13	U12
S(1)	14(1)	16(1)	17(1)	2(1)	3(1)	1(1)
O(1)	23(1)	16(1)	26(1)	3(1)	8(1)	3(1)
O(2)	12(1)	27(1)	22(1)	0(1)	1(1)	-1(1)
O(3)	17(1)	26(1)	18(1)	6(1)	3(1)	0(1)
N(1)	12(1)	15(1)	19(1)	-2(1)	3(1)	-3(1)
C(1)	13(1)	18(1)	17(1)	2(1)	4(1)	2(1)
C(2)	16(1)	19(1)	24(1)	0(1)	5(1)	-1(1)
C(3)	18(1)	24(1)	26(1)	8(1)	9(1)	2(1)
C(4)	16(1)	38(1)	20(1)	6(1)	6(1)	7(1)
C(5)	18(1)	34(1)	19(1)	-4(1)	3(1)	-3(1)
C(6)	16(1)	24(1)	25(1)	-2(1)	5(1)	-3(1)
C(7)	31(1)	59(1)	23(1)	11(1)	4(1)	1(1)
C(8)	14(1)	17(1)	20(1)	1(1)	2(1)	-3(1)
C(9)	14(1)	17(1)	15(1)	1(1)	2(1)	-2(1)
C(10)	14(1)	18(1)	15(1)	-1(1)	1(1)	-2(1)
C(11)	15(1)	14(1)	16(1)	-1(1)	3(1)	-2(1)
C(12)	13(1)	22(1)	17(1)	2(1)	2(1)	-3(1)
C(13)	26(1)	24(1)	19(1)	-3(1)	0(1)	-5(1)
C(14)	13(1)	24(1)	14(1)	-3(1)	2(1)	-4(1)
C(15)	18(1)	29(1)	25(1)	2(1)	3(1)	0(1)
C(16)	16(1)	42(1)	30(1)	0(1)	2(1)	3(1)
C(17)	17(1)	47(1)	24(1)	-8(1)	7(1)	-9(1)
C(18)	26(1)	30(1)	28(1)	-3(1)	10(1)	-10(1)
C(19)	20(1)	23(1)	25(1)	-2(1)	6(1)	-4(1)
C(20)	11(1)	22(1)	16(1)	0(1)	1(1)	1(1)
C(21)	18(1)	22(1)	20(1)	2(1)	2(1)	0(1)
C(22)	20(1)	32(1)	23(1)	8(1)	6(1)	5(1)
C(23)	18(1)	45(1)	15(1)	4(1)	3(1)	7(1)
C(24)	16(1)	41(1)	19(1)	-7(1)	0(1)	-3(1)
C(25)	16(1)	27(1)	20(1)	-1(1)	2(1)	-4(1)

Table 4. Anisotropic displacement parameters

Table 5.Hydrogen coordinates and isotropic displacement parameters

	Х	у	Z	U(eq)
H(3)	1225	4372	-436	30
H(2)	355	1513 1613		23
H(3A)	601	364	2517	27
H(5)	1964	6095	6095 2974	
H(6)	1715	7295 2079		25
H(7A)	1002	2999	3603	56
H(7B)	2125	2837	3596	56
H(7C)	1451	743	3431	56

H(8A)	2718	6848	1188	20
H(8B)	2781	6473	562	20
H(10A)	3128	2109	326	19
H(10B)	3139	551	843	19
H(11)	1591	1230	879	18
H(12)	618	2243	37	21
H(13A)	1046	-528	-515	35
H(13B)	1273	-1430	92	35
H(13C)	2124	-549	-193	35
H(15)	4960	1340	1174	29
H(16)	6482	1882	971	35
H(17)	6879	5225	600	34
H(18)	5744	8048	451	33
H(19)	4211	7512	650	27
H(21)	2879	385	1643	24
H(22)	3139	-215	2575	30
H(23)	3920	2437	3166	31
H(24)	4440	5726	2820	31
H(25)	4194	6309	1891	25

Table 6. Torsion angles

O(1)-S(1)-N(1)-C(8)	36.02(13)	C(11)-N(1)-C(8)-C(9)	-29.51(15)
O(2)-S(1)-N(1)-C(8)	165.50(11)	S(1)-N(1)-C(8)-C(9)	130.02(11)
C(1)-S(1)-N(1)-C(8)	-79.65(13)	N(1)-C(8)-C(9)-C(14)	154.27(12)
O(1)-S(1)-N(1)-C(11)	-166.73(11)	N(1)-C(8)-C(9)-C(20)	-83.04(14)
O(2)-S(1)-N(1)-C(11)	-37.25(13)	N(1)-C(8)-C(9)-C(10)	37.51(13)
C(1)-S(1)-N(1)-C(11)	77.60(12)	C(14)-C(9)-C(10)-C(11)	-154.44(12)
O(1)-S(1)-C(1)-C(6)	-25.10(14)	C(20)-C(9)-C(10)-C(11)	83.29(15)
O(2)-S(1)-C(1)-C(6)	-154.63(12)	C(8)-C(9)-C(10)-C(11)	-33.88(14)
N(1)-S(1)-C(1)-C(6)	90.51(13)	C(8)-N(1)-C(11)-C(12)	-112.91(14)
O(1)-S(1)-C(1)-C(2)	155.57(12)	S(1)-N(1)-C(11)-C(12)	87.29(14)
O(2)-S(1)-C(1)-C(2)	26.04(14)	C(8)-N(1)-C(11)-C(10)	7.53(14)
N(1)-S(1)-C(1)-C(2)	-88.81(13)	S(1)-N(1)-C(11)-C(10)	-152.26(10)
C(6)-C(1)-C(2)-C(3)	-0.3(2)	C(9)-C(10)-C(11)-N(1)	17.32(14)
S(1)-C(1)-C(2)-C(3)	178.97(12)	C(9)-C(10)-C(11)-C(12)	136.46(12)
C(1)-C(2)-C(3)-C(4)	-0.5(2)	N(1)-C(11)-C(12)-O(3)	55.59(15)
C(2)-C(3)-C(4)-C(5)	0.9(2)	C(10)-C(11)-C(12)-O(3)	-58.80(15)
C(2)-C(3)-C(4)-C(7)	-179.25(16)	N(1)-C(11)-C(12)-C(13)	176.61(12)
C(3)-C(4)-C(5)-C(6)	-0.5(2)	C(10)-C(11)-C(12)-C(13)	62.23(16)
C(7)-C(4)-C(5)-C(6)	179.60(16)	C(20)-C(9)-C(14)-C(19)	-119.30(15)
C(4)-C(5)-C(6)-C(1)	-0.3(2)	C(8)-C(9)-C(14)-C(19)	4.0(2)
C(2)-C(1)-C(6)-C(5)	0.7(2)	C(10)-C(9)-C(14)-C(19)	115.05(15)
S(1)-C(1)-C(6)-C(5)	-178.63(12)	C(20)-C(9)-C(14)-C(15)	61.23(17)

C(8)-C(9)-C(14)-C(15)	-175.45(13)	C(10)-C(9)-C(20)-C(21) -1.0(2)
C(10)-C(9)-C(14)-C(15)	-64.42(17)	C(14)-C(9)-C(20)-C(25) 54.90(17)
C(19)-C(14)-C(15)-C(16)	-0.8(2)	C(8)-C(9)-C(20)-C(25) -71.22(17)
C(9)-C(14)-C(15)-C(16)	178.66(14)	C(10)-C(9)-C(20)-C(25) 177.59(13)
C(14)-C(15)-C(16)-C(17)	0.1(3)	C(25)-C(20)-C(21)-C(22) -1.1(2)
C(15)-C(16)-C(17)-C(18)	0.7(3)	C(9)-C(20)-C(21)-C(22) 177.50(14)
C(16)-C(17)-C(18)-C(19)	-0.9(3)	C(20)-C(21)-C(22)-C(23) 0.6(2)
C(15)-C(14)-C(19)-C(18)	0.7(2)	C(21)-C(22)-C(23)-C(24) 0.2(2)
C(9)-C(14)-C(19)-C(18)	-178.78(14)	C(22)-C(23)-C(24)-C(25) -0.5(2)
C(17)-C(18)-C(19)-C(14)	0.2(3)	C(23)-C(24)-C(25)-C(20) 0.0(2)
C(14)-C(9)-C(20)-C(21)	-123.70(15)	C(21)-C(20)-C(25)-C(24) 0.8(2)
C(8)-C(9)-C(20)-C(21)	110.18(16)	C(9)-C(20)-C(25)-C(24) -177.90(14)

Table 7. Hydrogen bonds

, , ,							
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			
O(3)-H(3)O(2)#1	0.84	2.04	2.8634(17)	168.6			

Table 1.Crystal data and structure refinement for 9a

Properties	Data
Empirical	$C_{13}H_{17}NO_4S$
Formula weight	283.34
Temperature	113(2) K
Wavelength	0.71073 A
Cell length a	8.6906(17) A
Cell length b	11.953(2) A
Cell length c	13.546(3) A
Cell angle alpha	90 deg
Cell angle beta	90 deg
Cell angle gamma	90 deg
Cell volume	1407.1(5) A^3
Cell formula units Z	4, 1.337 Mg/m^3

Crystal Size 0.20 x 0.18 x 0.12 mm

	Х	у	Z	U(eq)
S(1)	10282(1)	9626(1)	7866(1)	17(1)
O(1)	10614(3)	8790(2)	8601(2)	24(1)
O(2)	10860(3)	10732(2)	8033(2)	25(1)
O(3)	8367(3)	10907(2)	6553(2)	34(1)
O(4)	7036(4)	12412(2)	4391(2)	51(1)
N(1)	8388(3)	9608(2)	7783(2)	22(1)
C(1)	10975(3)	9132(2)	6727(2)	16(1)
C(2)	11536(4)	9886(3)	6033(2)	20(1)
C(3)	12140(4)	9479(3)	5154(2)	25(1)
C(4)	12169(4)	8328(3)	4966(3)	28(1)
C(5)	11568(5)	7597(3)	5671(3)	28(1)
C(6)	10981(4)	7985(3)	6553(2)	22(1)
C(7)	7685(3)	10213(2)	7143(2)	17(1)
C(8)	5948(3)	10198(2)	7023(2)	20(1)
C(9)	5788(4)	10805(3)	6026(3)	25(1)
C(10)	7206(5)	11534(3)	5973(3)	33(1)
C(11)	7917(5)	11739(3)	4963(3)	31(1)
C(12)	5360(4)	8991(3)	7011(3)	31(1)
C(13)	5232(4)	10858(3)	7877(3)	31(1)

Table 2. Atomic coordination and equivalent isotropic displacement parameter

Table 3. Bond lengths

1.432(2)
1.441(2)
1.650(3)
1.758(3)
1.297(4)
1.481(4)
1.354(5)
0.8400
1.284(4)
1.391(4)
1.392(4)
1.389(5)
0.9500
1.400(5)
0.9500
1.395(5)

ilu ienguis	
C(4)-H(4A)	0.9500
C(5)-C(6)	1.380(5)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-C(8)	1.518(4)
C(8)-C(12)	1.531(4)
C(8)-C(13)	1.532(5)
C(8)-C(9)	1.539(4)
C(9)-C(10)	1.512(5)
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.522(5)
C(10)-H(10)	1.0000
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-H(12A)	0.9800

C(12)-H(12B)	0.9800	C(7)-C(8)-C(13)	108.5(3)
C(12)-H(12C)	0.9800	C(12)-C(8)-C(13)	111.0(3)
C(13)-H(13A)	0.9800	C(7)-C(8)-C(9)	100.3(2)
C(13)-H(13B)	0.9800	C(12)-C(8)-C(9)	113.8(3)
С(13)-Н(13С)	0.9800	C(13)-C(8)-C(9)	112.5(3)
		C(10)-C(9)-C(8)	103.8(3)
O(2)-S(1)-O(1)	117.42(14)	C(10)-C(9)-H(9A)	111.0
O(2)-S(1)-N(1)	111.92(15)	C(8)-C(9)-H(9A)	111.0
O(1)-S(1)-N(1)	103.73(14)	C(10)-C(9)-H(9B)	111.0
O(2)-S(1)-C(1)	109.19(15)	C(8)-C(9)-H(9B)	111.0
O(1)-S(1)-C(1)	107.74(14)	H(9A)-C(9)-H(9B)	109.0
N(1)-S(1)-C(1)	106.16(14)	O(3)-C(10)-C(9)	103.8(3)
C(7)-O(3)-C(10)	109.8(3)	O(3)-C(10)-C(11)	106.3(3)
C(11)-O(4)-H(4)	109.5	C(9)-C(10)-C(11)	117.8(3)
C(7)-N(1)-S(1)	120.8(2)	O(3)-C(10)-H(10)	109.5
C(2)-C(1)-C(6)	121.5(3)	C(9)-C(10)-H(10)	109.5
C(2)-C(1)-S(1)	119.7(2)	C(11)-C(10)-H(10)	109.5
C(6)-C(1)-S(1)	118.8(2)	O(4)-C(11)-C(10)	112.4(4)
C(3)-C(2)-C(1)	119.0(3)	O(4)-C(11)-H(11A)	109.1
C(3)-C(2)-H(2)	120.5	C(10)-C(11)-H(11A)	109.1
C(1)-C(2)-H(2)	120.5	O(4)-C(11)-H(11B)	109.1
C(2)-C(3)-C(4)	120.5(3)	C(10)-C(11)-H(11B)	109.1
C(2)-C(3)-H(3)	119.8	H(11A)-C(11)-H(11B)	107.9
C(4)-C(3)-H(3)	119.8	C(8)-C(12)-H(12A)	109.5
C(5)-C(4)-C(3)	119.0(3)	C(8)-C(12)-H(12B)	109.5
C(5)-C(4)-H(4A)	120.5	H(12A)-C(12)-H(12B)	109.5
C(3)-C(4)-H(4A)	120.5	C(8)-C(12)-H(12C)	109.5
C(6)-C(5)-C(4)	121.3(3)	H(12A)-C(12)-H(12C)	109.5
C(6)-C(5)-H(5)	119.3	H(12B)-C(12)-H(12C)	109.5
C(4)-C(5)-H(5)	119.3	C(8)-C(13)-H(13A)	109.5
C(5)-C(6)-C(1)	118.7(3)	C(8)-C(13)-H(13B)	109.5
C(5)-C(6)-H(6)	120.7	H(13A)-C(13)-H(13B)	109.5
C(1)-C(6)-H(6)	120.7	C(8)-C(13)-H(13C)	109.5
N(1)-C(7)-O(3)	124.0(3)	H(13A)-C(13)-H(13C)	109.5
N(1)-C(7)-C(8)	122.6(3)	H(13B)-C(13)-H(13C)	109.5
O(3)-C(7)-C(8)	113.3(3)		
C(7)-C(8)-C(12)	110.1(2)		

Table 4. Anisotropic displacement parameters

	U11	U22	U33	U23	U13	U12
S(1)	15(1)	22(1)	16(1)	-1(1)	-2(1)	3(1)
O(1)	23(1)	33(1)	15(1)	7(1)	-4(1)	6(1)
O(2)	23(1)	21(1)	30(1)	-9(1)	-8(1)	4(1)

O(3)	18(1)	36(1)	49(2)	27(1)	-3(1)	0(1)
O(4)	70(2)	39(2)	44(2)	7(1)	-18(2)	-4(2)
N(1)	15(1)	32(1)	20(1)	3(1)	0(1)	4(1)
C(1)	13(1)	17(1)	17(1)	2(1)	-1(1)	0(1)
C(2)	18(2)	18(1)	23(2)	5(1)	-2(1)	-2(1)
C(3)	22(2)	34(2)	20(2)	7(1)	1(1)	-3(1)
C(4)	28(2)	37(2)	20(2)	-2(1)	3(1)	3(2)
C(5)	38(2)	19(2)	27(2)	-6(1)	-1(2)	0(1)
C(6)	25(2)	17(1)	23(2)	4(1)	-1(1)	-3(1)
C(7)	15(1)	14(1)	22(1)	-2(1)	3(1)	0(1)
C(8)	13(1)	21(1)	24(2)	3(1)	-1(1)	2(1)
C(9)	22(2)	30(2)	25(2)	6(1)	-8(1)	-4(1)
C(10)	31(2)	32(2)	37(2)	5(2)	-8(2)	2(2)
C(11)	41(2)	30(2)	21(2)	1(1)	-7(2)	-15(2)
C(12)	21(2)	25(2)	46(2)	5(2)	-8(2)	-5(1)
C(13)	22(2)	38(2)	33(2)	-4(2)	1(2)	8(1)

Table 5. Hydrogen coordinates and isotropic displacement parameters

H(4)	6415	12020	4065	76
H(2)	11506	10668	6158	24
H(3)	12536	9986	4678	31
H(4A)	12591	8049	4368	34
H(5)	11563	6816	5540	34
H(6)	10589	7479	7032	26
H(9A)	5763	10263	5473	30
H(9B)	4840	11263	6008	30
H(10)	6994	12267	6301	40
H(11A)	8943	12086	5049	37
H(11B)	8063	11013	4624	37
H(12A)	5795	8596	6442	46
H(12B)	4234	8992	6963	46
H(12C)	5672	8613	7620	46
H(13A)	5470	10486	8503	47
H(13B)	4113	10893	7789	47
H(13C)	5654	11619	7884	47

Table 6. Torsion angles

O(2)-S(1)-N(1)-C(7)	56.7(3)	O(2)-S(1)-C(1)-C(6) 159.8(3)
O(1)-S(1)-N(1)-C(7)	-175.8(3)	O(1)-S(1)-C(1)-C(6) 31.2(3)
C(1)-S(1)-N(1)-C(7)	-62.3(3)	N(1)-S(1)-C(1)-C(6) -79.4(3)
O(2)-S(1)-C(1)-C(2)	-18.7(3)	C(6)-C(1)-C(2)-C(3) -1.2(5)
O(1)-S(1)-C(1)-C(2)	-147.3(2)	S(1)-C(1)-C(2)-C(3) 177.3(2)
N(1)-S(1)-C(1)-C(2)	102.1(3)	C(1)-C(2)-C(3)-C(4) 0.7(5)

C(2)-C(3)-C(4)-C(5)	0.6(5)	O(3)-C(7)-C(8)-C(13) -103.0(3)
C(3)-C(4)-C(5)-C(6)	-1.4(6)	N(1)-C(7)-C(8)-C(9) -166.2(3)
C(4)-C(5)-C(6)-C(1)	1.0(5)	O(3)-C(7)-C(8)-C(9) 15.1(3)
C(2)-C(1)-C(6)-C(5)	0.3(5)	C(7)-C(8)-C(9)-C(10) -26.5(3)
S(1)-C(1)-C(6)-C(5)	-178.1(3)	C(12)-C(8)-C(9)-C(10) -144.0(3)
S(1)-N(1)-C(7)-O(3)	-3.1(5)	C(13)-C(8)-C(9)-C(10) 88.7(3)
S(1)-N(1)-C(7)-C(8)	178.3(2)	C(7)-O(3)-C(10)-C(9) -21.1(4)
C(10)-O(3)-C(7)-N(1)	-175.3(3)	C(7)-O(3)-C(10)-C(11) -146.0(3)
C(10)-O(3)-C(7)-C(8)	3.4(4)	C(8)-C(9)-C(10)-O(3) 29.4(4)
N(1)-C(7)-C(8)-C(12)	-45.9(4)	C(8)-C(9)-C(10)-C(11) 146.6(3)
O(3)-C(7)-C(8)-C(12)	135.3(3)	O(3)-C(10)-C(11)-O(4) -173.4(3)
N(1)-C(7)-C(8)-C(13)	75.7(4)	C(9)-C(10)-C(11)-O(4) 70.7(4)

Table 7.Hydrogen bonds

, , ,							
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)			
O(4)-H(4)O(1)#1	0.84	2.11	2.917(4)	161.8			
O(4)-H(4)N(1)#1	0.84	2.61	3.272(4)	136.3			
O(4)-H(4)S(1)#1	0.84	2.95	3.776(3)	169.6			

8. References

- 1. G.-Q. Liu, Z.-Y. Ding, L. Zhang, T.-T. Li, L. Li, L. Duan and Y.-M. Li, *Adv. Synth. Catal.*, **2014**, 356, 2303-2310.
- 2. K. Komeyama, T. Morimoto and K. Takaki, Angew. Chem., Int. Ed., 2006, 45, 2938-2941.
- 3. S. Nicolai, C. Piemontesi and J. Waser, Angew. Chem. Int. Ed., 2011, 50, 4680-4683.
- 4. P. H. Fuller, J.-W. Kim and S. R. Chemler, J. Am. Chem. Soc. , 2008, 130, 17638-17639.
- 5. H. de, Teresa and C. Nevado, Angew. Chem. Int. Ed., 2011, 50, 906-910.
- 6. K. Moriyama, Y. Izumisawa and H. Togo, J. Org. Chem., 2012, 77, 9846-9851.
- 7. H. Takahashi, T. Tsubuki and K. Higashiyama, Chem. Pharm. Bul., 1991, 39, 260-265.
- 8. K. Moriyama, Y. Izumisawa and H. Togo, J. Org. Chem. , 2011, 76, 7249-7255.

9. Copies of NMR

1.00¹ 1.03 1.03 1.00 1.00 1.00 1.00

3.5

3.0

.95<mark>4</mark> .21-1

--

7.5

7.0

6.5

6.0

5.5

5.0

1.02-

8.0

.5

-3.07-J

1.0

3.04

0.5

0.0

2.22-

1.5

2.0

1.04-

2.5

—148.11	133.84 132.15 131.69 130.71	- 123.90				64.61 62.12 61.85		-42.71 -37.71	05 A2	0 t. 0 V		
			(N S $D_{2}N$	OH							
150	140 130	120	110 100	90	80 f1 (ppm)	70 60	50	40	30	20	10	0

447774 44777 47000 4777 4777 4777 4777	12203 0403 0503 051 12203 044 056 038 051	$\begin{array}{c} 99 \\ 99 \\ 28 \\ 23 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28$
	<u> </u>	<u>ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ</u> ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽ઌ૽

-00-100000-00-	-00011004-0001	~ のら4 8 ~ ののら ~ ら 4 0 4 0 ~ の
\circ	\bigcirc	v v v v v v v v v v v v v v v v v v v
~~~~~~~~~~~~~~~~	$\sim$ $\sim$ $\circ$	, , , , , , , , , , , , , , , , , , ,

05 118 118 118 118 118 118 118 118 118 11	
44. 36. 36. 25. 25. 25. 25. 25.	

33	73	7	14
64.	60.	58.	51.
Ň	5	1	Í

--39.89







 4.24

 4.21

 4.21

 4.21

 4.21

 4.21

 3.65

 3.65

 2.73

 2.73

 2.73

 2.73

 2.73

 2.73

 2.75

 2.75

 2.555

 2.555


~64.47 ~62.49 -20.52

-30.22





-157.67	-144.15	134.48 	134.04 129.66	~112.23 ~118.90 ~113.03	<u>~</u> 110.73				~65.31	~63.86	55.58		-31.37	-21.56	
						MeO、		N Ts	ОН						
60	150	140	130	120	110	100	90	80 81 (ppm)	70	60	50	40	30	20	10









00000004000000000000000000000000000000	74 667 67 558 558 558 558 558 558 558 558 558 55
<u>44444</u> 	















84	84	83	62
43.	33.	29.	27.
	1	5	1



-50.02

~28.82 ~24.23 ~21.55





 $\begin{array}{c} 7.57\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.557\\ 7.556\\ 7.557\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.556\\ 7.5$ 

		/136.84	√133.00 √129.23 √127.57	10.121				-65.74	61.85	50.01					
						Ĺ	N Bs	Oł	4						
						bilanzine andre state left				stand also solution	s 1.5 <b>1 1 1 1 1 1 1 1 1 1</b>				
160	150	140	130	120	110	100	90 80 f1 (ppm		60	50	40	30	20	10	•••• • • • • 0



136.92 135.60	131.95 131.89 128.75	125.29						64.31 60.11	-48.40		28 N2	~23.48 ~19.82		
	1			N 0=S // 0 Me		OH								
			1. date M. a. et a	a frada as de pu									- Albergalis - Alberjain au	
150 140	130	120	110	100	90	80 f1 (p	70 pm)	60	50	40	30	20	) 10	0 - 1 - 1 - 1



7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 7.02 





 $\begin{array}{c} 7.56\\ -7.72\\ -7.26\\ -2.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.55\\ -3.$ 









$\stackrel{Ph}{\underset{T_{S}}{}} \stackrel{OH}{\underset{Me}{}}$	$\begin{array}{c} 144.71 \\ 144.71 \\ 142.99 \\ 134.17 \\ 128.57 \\ 127.53 \\ 125.69 \\ 125.60 \\ 125.09 \end{array}$	$\begin{array}{c} -66.19 \\ \overline{}64.25 \\ -59.50 \\ -36.32 \\ -16.86 \\ -16.86 \end{array}$
		Ph Ph CH N Ts Me



145.01	√142.34 √141.73 √133.29	128.31 127.63 127.52	125.55 125.55 125.52	-125.21 -125.10				-71.79 68.95	-61.48	-51.02	-40.81	~25.70	21.36 ~20.40	
					Ph Ph N Ts		)H							
150	140	130	120	110	100	90	80 f1 (pp	70 m)	60	50	40	30	20	10



00 69 89 80 80 91
44. 33. 27. 28. 27. 26.

144.0 139.6 139.6 129.8 127.0 126.9		`66.12 ~61.56 √55.86	41.96 35.65	21.60
	Ph OH N Ts			
	Major diastereomer			
	ander alle het het som stadil der släve i selve i selve het het slävet alle som som ste Typens av en gjør av en selve som stadig av propositionet i regioner programmet av en som som som som som som s	n hale a second state hale de la second state de la second state de la second state de la second state de la se Na second second state de la second		ng tanàng mang mang mangkanan ang mangkang mangkang mangkang mangkang mangkang mangkang mangkang mangkang mang Manang mangkang mangka

1	· 1		1 1													
150	140	1	30	120	110	100	90	80	70	60	50	40	30	20	10	0
								f1 (p	pm)							







Major Diastereomer









Major Diastereomer





			~129.7 ~127 0	0.1212						52.7 52.6 47.4		-33.5 -26.9 -24.9	∠24.7     √21.5     √	
									0			H N、 Ts		
160	150	140	130		 100	90	80 f1 (ppm)	70	60	50	40	30	20	 0

볛








	-143 77		-134.60 	-127.50					-61.55 -59.02 	00.66~	43.82 37.52	~26.11	√25.63 √21.57	
						N Ts		N ₃						
							1 Sect Sudden, G. ef.			atlat, la				
160	150	, 140	130	) 120	110	100 100 100 100 100 100 100 100 100 100	90 f1 (		 60				20	 ······································







37.52 <37.46	26.09 25.79 21.56
$\begin{pmatrix} 37\\ 37 \end{pmatrix}$	√26 √25 ∕21





70.62	43.51	34.96 29.63 27.43	6.73 1.53 7.81	3.64	7.49	6.26 5.85 1.49 0.77
		151	ν Υ Υ Υ	4	С  -	000





—177.67		-143.97		~127.70				99 09 1	60.41	-44.31	38.90	<u>_</u> 25.70	\25.48 \21.58		
						N Ts	~COO	Ή							
					uni an fai ai ai ai fai b		nter fille state for state state			ale, et aut has te	terefor Atlant				
180 1	70 160	150	140 1	30 120	110	100 90 f1 (ppm)	80	70	60	50	40	30	20	10	0



















~7.78 ~7.76 ₹7.22
₹7.20 4.72 4.70 4.68 3.83 3.83 3.80 3.54 3.54 3.51 3.50 3.50

 2.33

 2.12

 2.15

 1.15

 1.15

 1.15

 1.15

 1.15

 1.15

 1.15













