Supporting Information for

CuFe₂O₄@PDA Magnetic Nanomaterials with Coreshell Structure: Synthesis and Catalytic Application in Degradation of Methylene Blue in Water Solution

Su-dai Ma ^{a,b}, Jie Feng ^{a,b}, Wen-jie Qin ^{a,b}, Yu-yun Ju ^{a,b}, Xing-guo Chen ^{a, b, c, *}

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China

^b Department of Chemistry, Lanzhou University, Lanzhou, 730000, China

^c Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou, 730000, China

^{*} Corresponding author. Fax: +86-931-8912582 TEL: +86-931-8912763.

E-mail address: chenxg@lzu.edu.cn.

Supplementary Figures

Fig. S1. XRD pattern of CuFe₂O₄ MNPs. Symbols (Δ) represent peaks of Cu.

Fig. S2. The degradation efficiency of MB with $CuFe_2O_4@PDA$ MNPs (red) and $CuFe_2O_4$ MNPs (black).

Fig. S3. Zeta potentials of CuFe₂O₄@PDA MNPs under different pH values.

Fig. S4. The molecular structure of MB.

Fig. S5. The adsorption efficiency of MB solution by $CuFe_2O_4$ @PDA MNPs at pH 3, pH 7, and pH 9.

Fig. S6. Degradation of MB in systems of H_2O_2 -CuFe₂O₄@PDA MNPs with increasing reaction time at different temperature: 298 K, 303 K, 308 K, 318 K.

Fig. S7. Catalytic activity of $CuFe_2O_4$ @PDA MNPs over various cycles of reutilization using identical reaction conditions.

Fig. S8. TEM images of (a) CuFe₂O₄@PDA MNPs dispersed in aqueous solution for a month, (b) CuFe₂O₄@PDA MNPs dispersed in acid solution with pH 2 for 24 h, and (c) CuFe₂O₄@PDA MNPs dispersed in acid solution with pH 3 for 24 h.

Fig. S9. Mass spectrum of the MB solution.

Fig. S10. Mass spectrum of resultant solution after degraded by $CuFe_2O_4@PDA$ MNPs.

Intermediate	Molecular Weight	Molecular structure
	S-7	

Table S1. Data of mass spectral peaks for some fresh intermediates in degradation process.

Fig. S11. Proposed generation pathway of some fresh intermediates were detected in mass spectrum.

Fig. S12. Ion chromatography spectra of resultant solution after degraded by $CuFe_2O_4@PDA$ MNPs. *, is still not clear, may be organic acids. PO_4^{3-} derives from the impurity of H_2O_2 solution.

Fig. S13. Feasible mechanism of MB degradation on $CuFe_2O_4@PDA$ MNPs at the existence of H_2O_2 .

Fig. S14. The effect of $CuFe_2O_4$ @PDA MNPs on the formation of hydroxyl radical with terephthalic acid as afluorescence probe. (a) 0.2 mg mL⁻¹ CuFe₂O₄@PDA MNPs, without H₂O₂; (b-e) 0, 0.2, 1, and 2 mg mL⁻¹ CuFe₂O₄@PDA MNPs, 500 mM H₂O₂. Reaction conditions: 0.625 mM terephthalic acid and different solutions were incubated in ultrapure water (pH 6.0) at 30°C for 1 h.