Construction of All-Substituted Pyrrolidine Derivative with Multiple

Stereogenic Centers and Betti-Base-derived *γ*-Amino Alcohols by

[1,2]-Wittig Rearrangement

Cai-Yun Wang^a, Cheng Dong^a, Zhan-Jiang Zheng^{*a}, Zheng Xu^a, Ke-Fang Yang^a, Li-Wen Xu^{*a,b}

^a Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education (MOE), Hangzhou Normal University, Hangzhou 311121; Tel: +86-571-28867756; E-mail: liwenxu@hznu.edu.cn
 ^b State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, P. R. China; E-mail: licpxulw@yahoo.com

Supporting Information

Table of Contents

S-1. General information	S2
S-2. Synthesis of various Betti base 10 under the classic reaction conditions	S2
S-3. The synthesis of Betti base-derived benzyl ethers 11	S6
S-4. The synthesis of Betti base-derived amino alcohols 12	S18
S-5. The synthesis of optically pure and all-substituted pyrrolidine derivative 13	through
intramolecular cyclization	S22
S-6. CD Spectroscopic Data of Chiral Products 12a and 13	S24
S-7. NMR and HRMS Charts of Bettti bases and it derivatives	S29
S-8. HPLC of chiral Betti base-derived amino alcohols 12a and all-substituted	
pyrrolidine derivative 13	S103

1. General Information

DCM was dried by CaH₂, distilled under Atmospheric pressure and stored under nitrogen. THF and Et₂O were dried by sodium benzophenone ketyl, distilled under Atmospheric pressure and stored under nitrogen. Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin layer chromatography using silica gel. All the reactions dealing with air or moisture sensitive compounds were carried out in a dry reaction vessel under positive pressure of argon. Air- and moisture-sensitive liquids and solutions were transferred via a syringe or a stainless steel cannula. NMR spectra were recorded on a Bruke Avance operating for ¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, and ¹⁹F NMR at 470 MHz, using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for ¹³C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI ionization.

2. Synthesis of various Betti base 10 under the classic reaction conditions.

General procedure for the synthesis of aminoalkylnaphthol 10 (Betti base). In the following typical procedure, a mixture of 2-naphthol (0.72 g, 5.0 mmol),

benzaldehyde (0.64g, 6.00 mmol), and 1-phenylethylamine (0.64 g, 5.25mmol) was stirred at 60 $^{\circ}$ C for 8 h under nitrogen atmosphere. Following the progress of the reaction by TLC and ¹H NMR, The reaction mixture was dispersed at room temperature with EtOH (5 mL). The white crystals separated were collected and washed with EtOH. The crystalline white residue, purified by crystallization from EtOAc/hexane, gives the pure **10**.

^{10a} **1**-(phenyl((1-phenylethyl)amino)methyl)naphthalen-2-ol (10a): ¹H NMR (400 MHz, CDCl₃) δ 7.76-7-72 (m, 2H), 7.38 (t, J = 7.1 Hz, 4H), 7.30 – 7.12 (m, 10H), 5.49 (s, 1H), 3.91 (q, J = 6.4 Hz, 1H), 2.31 (s, 1H), 1.50 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 143.2, 141.6, 129.8, 129.2, 129.1, 128.9, 128.1, 128.0, 127.8, 126.8, 122.5, 121.2, 120.2, 113.2, 60.4, 56.7, 23.1. IR (KBr) (vmax/ cm⁻¹): 3273, 3060, 2963, 1622, 1452, 1239, 818, 744, 671. HRMS (EI) calcd. for C₂₅H₂₄NO [M+H]⁺, 354.1858, found 354.1840. Isolated yield: 92 %.

6-methoxy-1-(phenyl((1-phenylethyl)amino)methyl)naphthale

n-2-ol (10b): ¹**H NMR** (400 MHz, CDCl₃) δ 13.43 (s, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.46 – 7.34 (m, 3H), 7.34 – 7.16 (m, 10H), 7.09 (s, 1H), 6.93 (d, J = 9.2 Hz, 1H), 5.42 (s, 1H), 3.89 (d, J = 7.0 Hz, 1H), 3.86 (s, 3H), 2.28 (d, J = 9.8 Hz, 1H), 1.51 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.7, 155.2, 148.3, 141.7, 129.7, 129.2 129.1, 128.6, 128.1, 128.0, 127.8, 126.8, 122.8, 120.6, 118.7, 113.7, 107.4, 60.5, 56.7, 55.4, 23.1. **IR** (KBr) (vmax/ cm⁻¹): 3423, 3312, 3021, 2959, 1606, 1519, 1493, 1385,

1242, 1100, 864, 700. **HRMS** (EI) calcd. for $C_{26}H_{26}NO [M+H]^+$, 384.1964, found 384.1944. Isolated yield: 56 %.

7-methoxy-1-(phenyl((1-phenylethyl)amino)methyl)naphthalen-2-ol (10c): ¹**H NMR** (400 MHz, CDCl₃) δ 13.68 (s, 1H), 7.69-7.63 (m, 2H), 7.44-7.37 (m, 3H), 7.26-7.20 (m, 7H), 7.10 (d, J = 8.8 Hz, 1H), 6.91 (d, J = 8.8 Hz, 1H), 6.68 (s, 1H), 5.36 (s, 1H), 3.92 (q, J = 6.7 Hz, 1H), 3.65 (s, 3H), 2.30 (s, 1H), 1.53 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.2, 158.0, 143.3, 141.5, 130.3, 129.5, 129.2, 129.0, 128.1, 128.0, 127.7, 127.0, 124.1, 117.6, 114.2, 112.5, 101.0, 60.5, 56.7, 55.0, 22.9. **IR** (KBr) (vmax/ cm⁻¹): 3424, 3298, 3057, 3008, 1620, 1475, 1225, 835, 699. **HRMS** (EI) calcd. for C₂₆H₂₆NO [M+H]⁺, 384.1964, found 384.1962. Isolated yield: 60 %.

1-(((1-phenylethyl)amino)(o-tolyl)methyl)naphthalen-2-ol (**10d):** ¹**H NMR** (400 MHz, CDCl₃) δ 13.77 (s, 1H), 7.74 (t, J = 8.8 Hz, 2H), 7.41 – 6.93 (m, 14H), 5.67 (s, 1H), 3.88 (s, 1H), 1.92 (s, 3H), 1.52 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.9, 142.5, 138.8, 135.0, 132.7, 131.0, 129.8, 129.1, 129.0, 128.93, 128.88, 128.2, 128.1, 127.3, 127.0, 126.7, 122.6, 120.9, 120.2, 113.9, 56.9, 56.8, 21.7, 18.3. **IR** (KBr) (vmax/ cm⁻¹): 3412, 3279, 3062, 2964, 1956, 1623, 1470, 1239, 745, 720. **HRMS** (EI) calcd. for C₂₆H₂₆NO [M+H]⁺, 368.2014, found 368.2000. Isolated yield: 72 %.

10e 1-((3-methoxyphenyl)((1-phenylethyl)amino)methyl)naphthalen -2-ol (10e): ¹H NMR (400 MHz, CDCl₃) δ 13.56 (s, 1H), 7.76 (d, J = 8.7 Hz, 2H), 7.42-7.36 (m, 4H), 7.27-7.22 (m, 5H), 7.17 (t, J = 7.8 Hz, 1H), 6.82-6.74 (m, 3H), 5.46 (s, 1H), 3.92 (q, J = 6.6 Hz, 1H), 3.71 (s, 3H), 1.53 (d, J = 6.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 132.7, 130.2, 130.0, 129.1, 128.9, 128.8, 128.2, 127.0, 126.6, 122.6, 121.2, 120.1, 113.8, 113.3, 60.4, 57.0, 55.3, 22.9. IR (KBr) (vmax/ cm⁻¹): 3427, 3290, 3059, 2965, 1601, 1456, 1264, 1096, 819. HRMS (EI) calcd. for C₂₆H₂₆NO [M+H]⁺, 384.1964, found 384.1953, HRMS (EI) calcd. for C₂₆H₂₅NONa [M+Na]⁺, 406.1783, found 406.1767. Isolated yield: 70 %.

1-((4-methoxyphenyl)((1-phenylethyl)amino)methyl)naphtha

len-2-ol (10f): ¹**H NMR** (400 MHz, CDCl₃) δ 13.43 (s, 1H), 7.73 (d, J = 8.5 Hz, 2H), 7.42 – 7.08 (m, 10H), 6.82 – 6.64 (m, 3H), 5.43 (s, 1H), 3.89 (q, J = 6.7 Hz, 1H), 3.67 (s, 3H), 1.50 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.1, 157.2, 142.58, 130.2, 130.0, 129.1, 128.9, 128.2, 127.0, 126.6, 122.6, 121.2, 120.1, 113.8, 113.3, 112.8, 60.4, 56.9, 55.2, 22.9. **IR** (KBr) (vmax/ cm⁻¹): 3422, 3309, 3023, 2996, 2360, 1600, 1457, 1417, 1264, 1164, 1038, 915, 816, 699. **HRMS** (EI) calcd. for C₂₆H₂₆NO [M+H]⁺, 384.1964, found 384.1942. Isolated yield: 79 %.

10g 1-(((1-(naphthalen-1-yl)ethyl)amino)(phenyl)methyl)naphthale n-2-ol (10g): ¹H NMR (400 MHz, CDCl₃) δ 13.94 (s, 1H), 7.82 (t, J = 6.8 Hz, 2H), 7.71 (d, J = 8.9 Hz, 1H), 7.68 – 7.42 (m, 4H), 7.35 (t, J = 7.3 Hz, 1H), 7.29 – 7.04 (m, 9H), 6.98 (t, J = 7.6 Hz, 1H), 5.47 (s, 1H), 4.84 (s, 1H), 2.55 (s, 1H), 1.56 (d, J = 6.3Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 141.7, 129.9, 129.2, 128.7, 127.8, 126.4, 126.3, 125.9, 125.7, 122.4, 121.3, 120.2, 113.6, 61.3, 23.2. IR (KBr) (vmax/ cm⁻¹): 3422, 3320, 3049, 2961, 2361, 1621, 1454, 1379, 1239, 1100, 780, 744. HRMS (EI) calcd. for C₂₉H₂₆NO [M+H]⁺, 404.2014, found 404.2011. Isolated yield: 62 %.

3. The synthesis of Betti base-derived benzyl ethers 11.

General procedure for the synthesis of 2-(benzyloxy)Aminoalkylnaphthalene 11. In the following typical procedure, a mixture of aminoalkylnaphthol 10 (Betti base), benzyl bromide (1.2 eq), K₂CO₃ (2.0 eq) in *N*,*N*-dimethylformamide (DMF) at room temperature for 1-2 days, The reaction was quenched with water and resulted mixture was extracted with ethyl acetate, and washed with water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethylacetate = 5/1) to give 11 in varied yields (see Table 1).

11a IN-((2-(benzyloxy)naphthalen-1-yl)(phenyl)methyl)-1-phen ylethanamine (11a): ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 2H), 7.68 (s, 1H), 7.51 – 7.09 (m, 16H), 7.01 (s, 2H), 5.69 (s, 1H), 5.06 (d, J = 6.7 Hz, 1H), 4.87 (d, J = 6.7 Hz, 1H), 3.64 (s, 1H), 2.92 (s, 1H), 1.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 146.4, 145.2, 137.0, 128.7, 128.6, 128.4, 127.9, 127.4, 127.3, 126.9, 123.7, 115.1, 55.8, 55.3, 26.0. **IR** (KBr) (vmax/ cm⁻¹): 3427, 3348, 3054, 3026, 2967, 1621, 1574, 1492, 1237, 1066, 803, 696. **HRMS** (EI) calcd. for C₃₂H₃₀NO [M+H]⁺, 444.2249, found 444.2348, **HRMS** (EI) calcd. for C₃₂H₂₉NONa [M+Na]⁺, 466.2147, found 466.2165. Isolated yield: 85 %.

N-((2-((2-methylbenzyl)oxy)naphthalen-1-yl)(phenyl)methyl)

-1-phenylethanamine (11b): ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.2 Hz, 2H), 7.64 (s, 1H), 7.34-7.07 (m, 18H), 6.99 (d, J = 7.4 Hz, 1H), 5.64 (s, 1H), 5.02 (d, J = 11.7 Hz, 1H), 4.82 (d, J = 11.4 Hz, 1H), 3.62 (d, J = 5.3 Hz, 1H), 2.90 (s, 1H), 2.13 (s, 3H), 1.19 (d, J = 4.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 136.1, 134.9, 128.7, 128.4, 128.2, 127.9, 127.3, 126.9, 126.1, 115.0, 69.5, 55.8, 55.3, 25.9, 18.7. IR (KBr) (vmax/ cm⁻¹): 3421.87, 3329.81, 2966.17, 1623.30, 1599.92, 1455.77, 1257.61, 1241.11, 1080.65, 741.43. HRMS (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 458.2484, found 458.2473. Isolated yield: 65 %.

11c IN-((2-((4-methylbenzyl)oxy)naphthalen-1-yl)(phenyl)methy **I**)-1-phenylethanamine (11c): ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.70 (m, 2H), 7.64 (s, 1H), 7.40 (d, *J* = 7.0 Hz, 2H), 7.34 – 7.09 (m, 12H), 7.04 (d, *J* = 7.5 Hz, 2H), 6.86 (d, *J* = 7.4 Hz, 2H), 5.64 (s, 1H), 5.00 (d, *J* = 11.5 Hz, 1H), 4.79 (d, *J* = 11.4 Hz, 1H), 3.62 (q, *J* = 6.3 Hz, 1H), 2.97 (s, 1H), 2.30 (s, 3H), 1.19 (d, *J* = 6.2 Hz, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 154.7, 146.4, 145.2, 129.21, 129.16, 128.7, 128.4, 127.8, 127.5, 127.3, 127.0, 126.9, 126.5, 125.9, 123.6, 115.1, 71.0, 55.8, 55.3, 25.9, 21.3. **IR** (KBr) (vmax/ cm⁻¹): 3422, 3334, 3056, 3016, 2921, 1595, 1511, 1492, 1234, 809, 700. **HRMS** (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 458.2484, found 458.2484. Isolated yield: 85 %.

N-((2-((4-(tert-butyl)benzyl)oxy)naphthalen-1-yl)(phenyl) **methyl)-1-phenylethanamine (11d):** ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.6Hz, 2H), 7.65 (s, 1H), 7.46 – 7.10 (m, 15H), 6.96 (d, J = 7.7 Hz, 2H), 5.65 (s, 1H), 5.04 (d, J = 11.6 Hz, 1H), 4.83 (d, J = 11.6 Hz, 1H), 3.62 (q, J = 6.2 Hz, 1H), 2.90 (s, 1H), 1.31 (s, 9H), 1.19 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 150.9, 146.4, 145.2, 134.0, 128.4, 127.9, 127.3, 127.2, 127.0, 125.5, 123.6, 115.2, 71.1, 55.9, 34.7, 31.57, 26.0. IR (KBr) (vmax/ cm⁻¹): 3421, 3362, 3024, 1622, 1513, 1252, 1070, 1015, 698. HRMS (EI) calcd. for C₃₆H₃₇NONa [M+Na]⁺, 522.2773, found 522.2784. Isolated yield: 99 %.

N-((2-((4-methoxybenzyl)oxy)naphthalen-1-yl)(phenyl)m

ethyl)-1-phenylethanamine (11e): ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.3 Hz, 2H), 7.63 (s, 1H), 7.51 – 7.07 (m, 15H), 6.90 (d, J = 7.7 Hz, 2H), 6.77 (d, J = 8.0 Hz, 2H), 5.62 (s, 1H), 5.00 (d, J = 11.1 Hz, 1H), 4.77 (d, J = 10.8 Hz, 1H), 3.78 (s, 3H), 3.61 (q, J = 5.8 Hz, 1H), 2.90 (s, 1H), 1.19 (d, J = 5.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 154.7, 129.2, 129.0, 128.4, 127.9, 127.8, 127.4, 127.0, 126.6, 125.9, 123.6, 115.1, 113.9, 70.9, 55.8, 55.4, 25.9. IR (KBr) (vmax/ cm⁻¹): 3423, 3337, 3057, 2999, 1618, 1513, 1246, 811, 702. HRMS (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 474.2433, found 474.2449. Isolated yield: 80 %.

N-((2-([1,1'-biphenyl]-2-ylmethoxy)naphthalen-1-yl)(phenyl) methyl)-1-phenylethanamine (11f): ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.62 (s, 1H), 7.44 – 7.10 (m, 21H), 7.08 (d, *J* = 8.9 Hz, 1H), 6.95 (s, 1H), 5.65 (s, 1H), 5.00 (d, *J* = 10.8 Hz, 1H), 4.73 (d, *J* = 9.0 Hz, 1H), 3.62 (s, 1H), 2.98 (s, 1H), 1.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 146.4, 145.2, 141.6, 140.5, 129.9, 129.3, 129.2, 128.7, 128.4, 127.9, 127.8, 127.4, 126.9, 123.6, 114.8, 69.0, 55.8, 55.2, 26.0. IR (KBr) (vmax/ cm⁻¹): 3416, 3349, 3025, 2886, 1621, 1593, 1254, 1068, 1016, 770, 702. HRMS (EI) calcd. for C₃₈H₃₄NO [M+H]⁺, 520.2640, found 520.2636. Isolated yield: 90 %.

11g N-((2-(allyloxy)naphthalen-1-yl)(phenyl)methyl)-1-phenylethan amine (11g): ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 2H), 7.62 (s, 1H), 7.41 (d, J = 5.1 Hz, 2H), 7.37 – 7.04 (m, 11), 5.65 (d, J = 11.2 Hz, 2H), 5.13 (t, J =13.9 Hz, 2H), 4.49 (s, 1H), 4.30 (s, 1H), 3.61 (s, 1H), 2.93 (s, 1H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 133.3, 129.5, 129.2, 128.7, 128.4, 127.9, 127.4, 126.9, 126.6, 127.0, 123.7, 117.5, 115.3, 70.2, 55.9, 55.2, 25.9. IR (KBr) (vmax/ cm⁻¹): 3431, 3339, 3056, 2864, 2361, 1594, 1491, 1248, 805, 704. HRMS (EI) calcd. for C₂₈H₂₈NO [M+H]⁺, 394.2171, found 394.2169. Isolated yield: 99 %.

11h N-((2-((perfluorophenyl)methoxy)naphthalen-1-yl)(phen yl)methyl)-1-phenylethanamine (11h): ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.82 (m, 2H), 7.62 (d, *J* = 6.0 Hz, 1H), 7.42 – 7.02 (m, 13H), 5.53 (s, 1H), 5.04 (d, *J* = 10.6 Hz, 1H), 4.85 (d, *J* = 10.1 Hz, 1H), 3.57 (q, *J* = 6.2 Hz, 1H), 2.64 (s, 1H), 1.21 (d, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 146.7, 146.2, 145.1, 144.2, 138.7, 136.2, 133.7, 130.0, 129.6, 128.8, 128.3, 127.8, 127.2, 126.8, 126.4, 125.9, 124.2, 123.9, 115.1, 110.1, 100.1, 55.8, 55.8, 54.9, 25.9. ¹⁹F NMR (470 MHz, CDCl₃) δ -142.07 (dd, *J* = 26.1, 5.9 Hz, 2F), -153.00 (t, *J* = 23.0 Hz, 1F), -160.33 – -162.08 (m,2F). **IR** (KBr) (vmax/ cm⁻¹): 3423, 3368, 3064, 2957, 1595, 1512, 1256, 1131, 1023, 938, 618. **HRMS** (EI) calcd. for C₃₂H₂₄NOF₅ [M+Na]⁺, 556.1676, found: 556.1654. Isolated yield: 62 %.

N-((2-((4-fluorobenzyl)oxy)naphthalen-1-yl)(phenyl)methyl

)-1-phenylethanamine (11i): ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 2H), 7.64 (s, 1H), 7.47 – 7.06 (m, 13H), 6.94 – 6.82 (m, 4H), 5.64 (s, 1H), 5.00 (d, J = 11.3 Hz, 1H), 4.77 (d, J = 11.1 Hz, 1H), 3.59 (q, J = 5.8 Hz, 1H), 2.84 (s, 1H), 1.18 (d, J = 5.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, $J_{C-F} = 244.0$ Hz) 154.5, 146.3, 145.2, 132.6, 131.7, 129.3 (d, $J_{C-F} = 8.0$ Hz), 128.8, 128.4, 128.0, 127.3, 126.9, 126.7, 126.0, 123.8, 115.4 (d, $J_{C-F} = 22$ Hz), 115.0, 70.5, 55.8, 55.2, 26.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -114.21 (s, 1F). **IR** (KBr) (vmax/ cm⁻¹): 3422, 3344, 3056, 2960, 2362, 1597, 1512, 1228, 1078, 1020, 703. **HRMS** (EI) calcd. for C₃₂H₂₉NOF [M+H]⁺, 462.2233, found 462.2235. Isolated yield: 82 %.

11k N-((2-((3-bromobenzyl)oxy)naphthalen-1-yl)(phenyl)methyl)- **1-phenylethanamine (11k):** ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.4 Hz, 2H), 7.69 (s, 1H), 7.49 – 7.06 (m, 16H), 6.89 (d, J = 7.4 Hz, 1H), 5.67 (s, 1H), 5.03 (d, J = 11.9 Hz, 1H), 4.78 (d, J = 11.8 Hz, 1H), 3.63 (q, J = 5.7 Hz, 1H), 2.85 (s, 1H), 1.23 (d, J = 5.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 139.2, 131.1, 130.3, 130.2, 128.4, 128.0, 127.3, 126.8, 125.9, 123.9, 115.0, 70.4, 55.8, 55.1, 26.0. **IR** (KBr) (vmax/ cm⁻¹): 3338, 3061, 3023, 2958, 2360, 1596, 1513, 1235, 1070, 877, 801, 743, 696. **HRMS** (EI) calcd. for C₃₂H₂₉NOBr [M+H]⁺, 524.1433, found 524.1428. Isolated yield: 60 %.

N-((2-((4-bromobenzyl)oxy)naphthalen-1-yl)(phenyl)meth

yl)-1-phenylethanamine (111): ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.5 Hz, 2H), 7.64 (s, 1H), 7.47 – 7.09 (m, 15), 6.76 (d, J = 7.0 Hz, 2H), 5.64 (s, 1H), 4.98 (d, J = 11.5 Hz, 1H), 4.75 (d, J = 11.2 Hz, 1H), 3.59 (q, J = 5.1 Hz, 1H), 2.81 (s, 1H), 1.18 (d, J = 4.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 135.8, 131.7, 129.4, 129.1, 128.8, 128.4, 128.0, 127.3, 126.9, 126.7, 126.1, 123.9, 121.9, 114.8, 70.4, 55.8, 55.2, 26.0 (s). IR (KBr) (vmax/ cm⁻¹): 3421, 3370, 3063, 3023, 1594, 1490, 1215, 1069, 800, 701. HRMS (EI) calcd. for C₃₂H₂₉NOBr [M+H]⁺, 524.1433, found 524.1428. Isolated yield: 68 %.

N-((2-((2-bromo-5-fluorobenzyl)oxy)naphthalen-1-yl)(phen

yl)methyl)-1-phenylethanamine (11m): ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.6 Hz, 2H), 7.72 (s, 1H), 7.58 – 7.05 (m, 15H), 6.82 (t, J = 8.2 Hz, 1H), 6.55 (d, J = 7.9 Hz, 1H), 5.72 (s, 1H), 5.08 (d, J = 13.7 Hz, 1H), 4.80 (d, J = 13.7 Hz, 1H), 3.61 (q, J = 6.1 Hz, 1H), 2.77 (s, 1H), 1.23 (d, J = 6.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, $J_{C-F} = 246.0$ Hz), 154.0, 146.2, 145.0, 138.6 (d, $J_{C-F} = 8$ Hz), 133.6 (d, $J_{C-F} = 8$ Hz), 129.8, 129.5, 128.8, 128.4, 128.1, 127.2, 127.0, 126.8, 126.2, 124.0, 116.4, 116.1 (d, $J_{C-F} = 8$ Hz), 115.8, 115.4, 114.8, 70.2, 55.8, 55.0, 26.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -113.36 (s, 1F). **IR** (KBr) (vmax/ cm⁻¹): 3420, 3335, 3026, 2937, 1594, 1491, 1284, 1027, 806, 721, 701. Isolated yield: 77%.

N-((2-((2,4-difluorobenzyl)oxy)naphthalen-1-yl)(phen

yl)methyl)-1-phenylethanamine (11n): ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.76 (m, 2H), 7.64 (s, 1H), 7.45 – 7.08 (m, 13H), 6.75 (t, J = 9.5 Hz, 1H), 6.65 (d, J = 6.9 Hz, 2H), 5.64 (s, 1H), 5.11 (d, J = 11.3 Hz, 1H), 4.77 (d, J = 10.7 Hz, 1H), 3.59 (q, J = 4.2 Hz, 1H), 2.77 (s, 1H), 1.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0 (d, J = 12.0 Hz), 161.5 (t, J = 20.0 Hz), 159.1 (d, J = 12.0 Hz), 154.3, 146.3, 145.2, 133.7, 130.9, 129.7, 129.4, 128.8, 128.4, 128.0, 127.3, 126.9, 126.7, 126.0, 123.9, 120.1 (d, J = 10.0 Hz), 114.8, 111.5 (dd, J = 23.0 Hz, 3 Hz), 103.7 (t, J = 25.0 Hz), 64.2, 55.8, 55.1, 26.0. ¹⁹F NMR (470 MHz, CDCl₃) δ -110.26 (s, 1F), -114.70 (s, 1F). IR (KBr) (vmax/ cm⁻¹): 3425, 3025, 2923, 2368, 1622, 1508, 1253, 1098, 962, 849, 804, 701. HRMS (EI) calcd. for C₃₂H₂₈NOF₂ [M+H]⁺, 480.2139,

found 480.2142. Isolated yield: 73 %.

N-((2-((4-nitrobenzyl)oxy)naphthalen-1-yl)(phenyl)meth yl)-1-phenylethanamine (110): ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.9 Hz, 2H), 7.80 (d, J = 8.6 Hz, 2H), 7.66 (s, 1H), 7.47 – 7.09 (m, 13H), 6.99 (d, J = 7.5 Hz, 2H), 5.67 (s, 1H), 5.11 (d, J = 12.4 Hz, 1H), 4.87 (d, J = 12.5 Hz, 1H), 3.57 (q, J = 4.9Hz, 1H), 2.69 (s, 1H), 1.18 (d, J = 3.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 147.6, 144.2, 129.5, 128.8, 128.5, 128.1, 127.7, 127.2, 126.9, 126.2, 124.1, 123.8, 114.7, 70.0, 55.8, 55.0, 26.2. **IR** (KBr) (vmax/ cm⁻¹): 3427, 2366, 2332, 1625, 1522, 1345, 1112, 1085, 1028, 805, 701. **HRMS** (EI) calcd. for C₃₂H₂₉N₂O₃ [M+H]⁺, 489.2178, found 489.2180. Isolated yield: 36 %.

N-((2-((3-nitrobenzyl)oxy)naphthalen-1-yl)(phenyl)methyl)-

1-phenylethanamine (11p): ¹**H NMR** (400 MHz, CDCl₃) δ 8.10 (d, J = 8.1 Hz, 1H), 7.99 (s, 1H), 7.83 (d, J = 8.7 Hz, 2H), 7.71 (s, 1H), 7.43 (d, J = 7.1 Hz, 2H), 7.40 – 7.06 (m, 13H), 5.70 (s, 1H), 5.12 (d, J = 12.0 Hz, 1H), 4.81 (d, J = 11.9 Hz, 1H), 3.63 (q, J = 6.2 Hz, 1H), 2.75 (s, 1H), 1.23 (d, J = 5.6 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.1, 148.3, 138.9, 133.4, 129.6, 128.4, 128.0, 127.2, 126.76 (s), 124.1, 122.9, 122.1, 115.0, 70.1, 55.8, 55.0, 26.0. **IR** (KBr) (vmax/ cm⁻¹): 3446, 2918, 2850, 2363, 1734, 1653, 1559, 1508, 1348, 1240, 1093, 803. **HRMS** (EI) calcd. for C₃₂H₂₉N₂O₃ [M+H]⁺, 489.2178, found 489.2177. Isolated yield: 30 %.

(1S)-N-((2-(benzyloxy)naphthalen-1-yl)(phenyl)methyl)-1-(n

aphthalen-1-yl)ethanamine (11q): ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.04 (m, 31H), 5.54 (d, *J* = 12.0 Hz, 1H), 5.30 (d, *J* = 12.0 Hz, 1H), 5.24 (d, *J* = 12.1 Hz, 1H), 5.03 (d, *J* = 11.6 Hz, 1H, diastereomeric isomer mixtures), 3.63 (q, *J* = 6.3 Hz, 1H), 2.83 (s, 1H), 1.21 (d, *J* = 6.5 Hz, 1H, diastereomeric isomer mixtures), 1.14 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 146.4, 145.1, 128.80, 128.3, 127.8, 127.3, 126.8, 126.6, 125.9, 125.8, 125.5, 123.7, 123.4, 115.2, 69.7, 63.1, 55.9, 25.9. IR (KBr) (vmax/ cm⁻¹): 3446, 3032, 2920, 2362, 1717, 1653, 1623, 1541, 1508, 1457, 1238, 1068, 801, 779, 700. HRMS (EI) calcd. for C₃₆H₃₂NO [M+H]⁺, 494.2484, found 494.2485. Dr = 67:37; Isolated yield: 83%.

N-((2-((3-methylbenzyl)oxy)naphthalen-1-yl)(phenyl)methyl)

-1-phenylethanamine (11r): ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 2H), 7.68 (s, 1H), 7.44 (d, *J* = 6.6 Hz, 2H), 7.41 – 7.16 (m, 13H), 7.11 (d, *J* = 7.3 Hz, 1H), 6.87 (s, 2H), 5.68 (s, 1H), 5.08 (d, *J* = 11.6 Hz, 1H), 4.88 (d, *J* = 11.5 Hz, 1H), 3.66 (q, *J* = 5.5 Hz, 1H), 3.00 (s, 1H), 2.32 (s, 3H), 1.24 (d, *J* = 5.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 146.4, 145.2, 138.2, 136.9, 128.7, 128.5, 128.4, 128.1, 127.9, 127.4 127.0, 124.5, 115.1, 71.2, 55.8, 55.3, 26.0, 21.5. IR (KBr) (vmax/ cm⁻¹): 3422, 2961, 2866, 2362, 1623, 1559, 1490, 1457, 1253, 1068, 804, 700. Isolated yield: 86 %.

115 N-((2-(benzyloxy)-7-methoxynaphthalen-1-yl)(phenyl)me thyl)-1-phenylethanamine (11s): ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 14.2, 8.9 Hz, 2H), 7.47 (d, J = 6.4 Hz, 2H), 7.35 (d, J = 7.4 Hz, 3H), 7.32 – 7.15 (m, 10H), 7.00 (d, J = 8.0 Hz, 3H), 5.63 (s, 1H), 5.08 (d, J = 11.7 Hz, 1H), 4.87 (d, J = 11.4 Hz, 1H), 3.66 (q, J = 5.8 Hz, 1H), 3.50 (s, 3H), 2.91 (s, 1H), 1.24 (d, J = 5.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 155.3, 146.6, 145.4, 137.0, 130.2, 128.5, 128.4, 128.0, 127.4, 127.3, 126.9, 116.9, 112.3, 70.9, 55.7, 55.3, 54.9, 26.2. IR (KBr) (vmax/ cm⁻¹): 3446, 3058, 3026, 2953, 2361, 1626, 1515, 1420, 1229, 1029, 970, 826, 700. HRMS (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 474.2355, found 474.2429. Isolated yield: 60 %.

11t N-((2-(benzyloxy)naphthalen-1-yl)(4-methoxyphenyl)met hyl)-1-phenylethanamine (11t): ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.37 (d, J = 9.2 Hz, 2H), 7.33-7.26 (m, 14H), 7.12 – 7.00 (m, 3H), 5.63 (d, J = 9.5 Hz, 1H), 5.15 (d, J = 11.6 Hz, 1H), 5.08 (d, J = 11.6 Hz, 1H), 3.69 (q, J = 6.4 Hz, 1H), 2.76 (s, 1H), 1.97 (s, 3H), 1.21 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 145.7, 141.9, 130.6, 129.3, 128.7, 128.3, 128.2, 128.1, 127.6, 127.0, 126.5, 125.6, 123.5, 114.5, 71.1, 55.9, 54.8, 24.8, 19.9. **IR** (KBr) (vmax/ cm⁻¹): 3421, 2361, 1653, 1559, 1508, 1457, 1262, 1221, 1023, 806, 700. **HRMS** (EI) calcd. for C₃₃H₃₂NO₂ [M+H]⁺, 474.2433, found 474.2433. Isolated yield: 68 %.

Ind Ind N-((2-(benzyloxy)naphthalen-1-yl)(o-tolyl)methyl)-1-phenylet hanamine: (11u) ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 2H), 7.66 (s, 1H), 7.36-7.06 (m, 15H), 6.86 (d, J = 6.8 Hz, 1H), 6.69 (d, J = 7.6 Hz, 1H), 5.63 (s, 1H), 5.07 (d, J = 11.6 Hz, 1H), 4.86 (d, J = 11.4 Hz, 1H), 3.70 (s, 3H), 3.62 (d, J = 5.9Hz, 1H), 1.19 (d, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 154.7, 147.2, 146.4, 137.0, 129.2, 128.8, 128.7, 128.5, 128.4, 127.9, 127.4, 127.3, 126.9, 126.6, 123.7, 119.5, 115.1, 113.0, 111.1, 71.2, 55.8, 55.2, 26.0. IR (KBr) (vmax/ cm⁻¹): 3430, 3333, 3030, 2964, 2835, 1609, 1454, 1434, 1283, 1235, 1144, 1046, 808, 768, 703. HRMS (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 458.2484, found 458.2485. Isolated yield: 40 %.

4. The synthesis of Betti base-derived amino alcohols 12.

Under argon atmosphere, to a solution of **11** (2 mmol) in the dry THF (10 ml) at -78 $^{\circ}$ C, the *n*-BuLi (4 mL, 10 mmol, 2.5 M in hexane) was added slowly in 15 min. After the addition, the solution was allowed to stir at -78 $^{\circ}$ C for 1-2 h. And then the reaction solution was warmed to room temperature slowly. After quenched with saturated NH₄Cl solution, the resulted mixture was extracted with ethyl acetate, and washed with water and saturated NaCl solution. The organic layer was dried over Na₂SO₄, concentrated, and the residue was purified by column chromatography (hexanes/ethyl

acetate = 20/1) to give **12** as a colorless powder.

yl)methanol (12a): ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 8.1 Hz, 1H), 7.71 (t, *J* = 6.8 Hz, 2H), 7.51 (d, *J* = 6.8 Hz, 1H), 7.42-7.15 (m, 17H), 6.32 (s, 1H), 6.09 (s, 1H), 3.62 (q, *J* = 5.6 Hz, 1H), 2.11 (s, 1H), 1.43 (d, *J* = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 143.3, 142.9, 142.1, 137.0, 133.1, 128.8, 128.7, 128.6, 128.0, 127.6, 127.5, 126.9, 126.7, 126.4, 126.3, 126.0, 125.7, 123.9, 70.8, 56.5, 56.2, 24.5. IR (KBr) (vmax/ cm⁻¹): 3407, 3058, 3025, 2963, 2359, 1725, 1710, 1600, 1449, 1030, 818, 700. HRMS (EI) calcd. for C₃₂H₃₀NO [M+H]⁺, 444.22, found 444.2313, HRMS (EI) calcd. for C₃₂H₂₉NO [M+Na]⁺, 466.2147, found 466.2118. Isolated yield: 76 %.

phenyl(1-(phenyl((1-phenylethyl)amino)methyl)naphthalen-2-

(1-(phenyl((1-phenylethyl)amino)methyl)naphthalen-2-yl)(o-to lyl)methanol (12b): ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.6 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 6.9 Hz, 3H), 7.38 – 7.13 (m, 10H), 7.00 (d, *J* = 5.6 Hz, 2H), 6.94 – 6.81 (m, 2H), 6.20 (s, 1H), 6.16 (s, 1H), 3.59 (q, *J* = 6.5 Hz, 1H), 1.50 (d, *J* = 5.7 Hz, 3H), 0.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 141.0, 135.1, 133.5, 133.3, 130.0, 129.3, 129.0, 128.9, 128.7, 128.5, 127.8, 127.0, 126.9, 126.6, 126.5, 126.4, 125.9, 125.9, 124.0, 68.4, 55.9, 55.5, 24.6, 18.4. **IR** (KBr) (vmax/ cm⁻¹): 3428, 3054, 2368, 2344, 1636, 1449, 1385, 1031, 737, 700. **HRMS** (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 458.2484, found 458.2475. Isolated yield: 56 %.

12c [1,1'-biphenyl]-2-yl(1-(phenyl((1-phenylethyl)amino)methyl) naphthalen-2-yl)methanol (12c): ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 6.7 Hz, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.60 – 6.59 (m, 19H), 6.06 (s, 1H), 3.51 (q, *J* = 6.4 Hz, 1H), 2.09 (s, 1H), 1.35 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 140.8, 140.7, 133.6, 133.1, 130.7, 128.9, 128.8, 128.6, 128.5, 128.4, 127.9, 127.7, 127.6, 127.4, 126.8, 126.7, 126.2, 126.0, 125.5, 124.9, 69.7, 56.0, 31.7, 22.8. **IR** (KBr) (vmax/ cm⁻¹): 3426, 3058, 3025, 2958, 2923, 2856, 2368, 2344, 2332, 1624, 1508, 1449, 1099, 1028, 819, 748, 701. **HRMS** (EI) calcd. for C₃₈H₃₄NO [M+H]⁺, 520.2640, found 520.2642. Isolated yield: 79 %.

(1-(((1-(naphthalen-1-yl)ethyl)amino)(phenyl)methyl)naphthalen-2-yl)(phenyl)m ethanol (12d): ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 7.5 Hz, 1H), 7.54 – 6.99 (m, 21H), 6.76 (s, 1H, mixtue of diatereomers), 6.23 (s, 2H), 4.59 (s, 1H), 0.98 (d, J = 6.6 Hz, 1H, mixtue of diatereomers, 0.92 – 0.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 142.9, 141.8, 140.3, 137.2, 134.1, 133.1, 131.5, 128.8, 128.7, 128.6, 128.5, 128.1, 127.8, 127.6, 127.4, 127.0, 126.4, 126.9, 126.4, 126.1, 126.0, 125.9, 125.7, 125.6, 122.4, 122.2, 71.0, 56.5, 24.5, 14.3. **IR** (KBr) (vmax/ cm⁻¹): 3433, 3057, 2918, 2850, 2364, 1699, 1653, 1636, 1541, 1508, 1457, 1110, 1030, 778, 728. **HRMS** (EI) calcd. for C₃₆H₃₁NO [M+H]⁺, 494.2484, found 494.2483. Isolated yield: 62 %.

(1-(phenyl((1-phenylethyl)amino)methyl)naphthalen-2

-yl)(p-tolyl)methanol (12e): ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 1H), 7.67 (s, 1H), 7.48 (d, *J* = 6.7 Hz, 1H), 7.42 (d, *J* = 7.2 Hz, 2H), 7.38 – 7.14 (m, 10H), 7.09 (d, *J* = 5.1 Hz, 2H), 7.02 (d, *J* = 4.1 Hz, 2H), 6.25 (s, 1H), 6.09 (s, 1H), 3.6 (b, 1H), 2.34 (d, *J* = 2.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 139.9, 136.4, 133.2, 129.1, 128.93, 128.85, 128.7, 128.3, 128.0, 127.8, 127.1, 127.0, 126.5, 126.3, 126.2, 125.8, 123.8, 70.7, 56.7, 24.4, 21.2. IR (KBr) (vmax/cm⁻¹): 3421, 3025, 2965, 2362, 1653, 1508, 1457, 1262, 1030, 909, 761, 700. HRMS (EI) calcd. for C₃₃H₃₂NO [M+H]⁺, 458.2484, found 458.2485. Isolated yield: 42 %.

(4-methoxyphenyl)(1-(phenyl((1-phenylethyl)amino)m

ethyl)naphthalen-2-yl)methanol (12f): ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.63 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.50 – 7.10 (m, 11H), 7.02 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 7.6 Hz, 1H), 6.81 (d, J = 7.8 Hz, 2H), 6.20 (s, 1H), 6.07 (s, 1H), 3.79 (s, 3H), 3.68 – 3.58 (m, 1H), 1.46 (d, J = 5.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.6, 142.1, 134.9, 133.2, 130.5, 129.9, 129.2, 129.0, 128.9, 128.8, 128.3, 128.0, 127.8, 127.5, 127.2, 127.1, 126.6, 126.3, 125.9, 123.8, 114.0, 113.6, 70.5, 56.8, 55.4, 24.3. IR (KBr) (vmax/ cm⁻¹): 3421, 3309, 2930, 2654, 2164, 1624, 1508, 1457, 1262, 1230, 1032, 840, 700. HRMS (EI) calcd. for C₃₃H₃₂NO₂ [M+H]⁺, 474.2355, found HRMS+H: 474.2433. Isolated yield: 20 %.

12g phenyl(1-(((1-phenylethyl)amino)(o-tolyl)methyl)naphthalen-2yl)methanol (12g): ¹**H NMR** (400 MHz, CDCl₃) δ 7.77 (d, J = 8.1 Hz, 1H), 7.67-7.61 (m, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.36 – 7.07 (m, 12H), 7.04 (d, J = 8.5 Hz, 1H), 6.91 (s, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 6.23 (s, 1H), 5.94 (s, 1H), 3.66 (s, 3H), 3.52 (d, J = 6.6 Hz, 1H), 1.99 (s, 1H), 1.34 (d, J = 6.2 Hz, 3H). **13C NMR** (100 MHz, CDCl₃) δ 160.0, 143.0, 129.7, 128.9, 128.9, 128.1, 127.7, 126.9, 126.5, 126.5, 125.8, 118.7, 112.8, 111.8, 70.9, 56.6, 56.5, 55.4, 24.5. **IR** (KBr) (vmax/cm⁻¹): 3447, 2967, 2920, 2166, 1636, 1508, 1457, 1261, 1101, 1048, 767, 698. Isolated yield: 28 %.

12h (7-methoxy-1-(phenyl((1-phenylethyl)amino)methyl)naphth alen-2-yl)(phenyl)methanol (12h): ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.9 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.43 (d, J = 7.6 Hz, 2H), 7.38 – 7.19 (m, 10H), 7.15 (d, J = 7.4 Hz, 2H), 7.10 (d, J = 7.3 Hz, 2H), 6.96 – 6.86 (m, 2H), 6.22 (s, 1H), 5.98 (s, 1H), 3.60 (q, J = 6.5 Hz, 1H), 3.51 (s, 3H), 2.06 (s, 1H), 1.43 (d, J = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 143.0, 130.3, 128.9, 128.8, 128.6, 128.1, 127.6, 126.9, 126.4, 126.0, 118.8, 102.1, 70.7, 56.5, 56.0, 54.9, 24.9. IR (KBr) (vmax/ cm⁻¹): 3421, 2164, 1624, 1559, 1507, 1457, 1262, 1230, 1032, 840. HRMS (EI) calcd. for C₃₃H₃₂NO₂ [M+H]⁺, 474.2355, found IR . HRMS+H 474.2433. Isolated yield: 20 %.

5. The synthesis of optically pure and all-substituted pyrrolidine derivative 13 through intramolecular cyclization.

A 100 mL three-necked flask was charged with freshly distilled PCl_3 (986.5 mg, 7.18 mmol) in anhydrous CH_2Cl_2 (12 mL). The solution was cooled to 0 °C, and NEt₃ (5 mL, 359 mmol) was added dropwise to the solution. And then a solution of **12a** (3.18g, 7.18 mol) in CH_2Cl_2 (30 mL) was slowly added over 30 min to the reaction mixture, and the reaction solution was kept at 0 °C. After completing the addition, the ice bath was removed, and the resulting suspension was stirred for 90 min at room temperature. The reaction was quenched with H₂O (30 mL). The aqueous phase was extracted once with CH_2Cl_2 (40 mL). The combined organic phases were dried over Na_2SO_4 , the salt was removed by filtration, and the solution was evaporated to afford the crude product, which was purified by flash chromatography under pressure of argon: $R_f = 0.4$ (3:1 (v/v) pentane/CH₂Cl₂). The solvent was evaporated, and the product was dried under vacuum (0.04 mm) to afford **5** as a white powder.

1,3-diphenyl-2-(1-phenylethyl)-2,3-dihydro-1H-benzo[e]isoindole: ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.1 Hz, 1H), 7.67 (d, J = 7.4 Hz, 2H), 7.63 (d, J = 8.4 Hz, 1H), 7.45 – 7.08 (m, 16H), 7.01 (d, J = 8.4 Hz, 1H), 5.68 (s, 1H), 5.48 (s, 1H), 4.22 (q, J = 6.7 Hz, 1H), 1.23 (d, J = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 140.6, 136.6, 133.6, 129.4, 128.8, 128.7, 128.6, 128.5, 128.3, 128.3, 128.0, 127.3, 127.0,

126.9, 126.1, 125.0, 124.2, 121.1, 70.6, 60.0, 20.4. **IR** (KBr) (vmax/ cm⁻¹): 3420, 3059, 3028, 2970, 2369, 1680, 1600, 1492, 1453, 1145, 1026, 809, 700. **HRMS** (EI) calcd. for $C_{32}H_{28}N [M+H]^+$, 426.2222, found 426.2213. Isolated yield: 95 %.

6. CD Spectroscopic Data of Chiral Products 12a and 13

Computational details: The Gaussian 03 software package was used to carry out gas phase density functional theory (DFT) geometry optimizations ^[1]. The hybrid B3LYP functional was selected and 6-31G(d) basis sets were used. The same functional and basis set was used to obtain excitation energies and oscillator strengths from time dependent density functional theory (TD-DFT) calculations. The (R)- and (S)-silane are both taken as models for calculation. The calculated CD spectra were shown by the SpecDis software package (Version 1.51) software to yield higher-quality images, with comparison to the measured ones.^[2]

References:

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Jr.; Stratmann, R. E.; Burant,
J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas,
O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo,
C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.;
Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M. E.; Replogle, S.;
Pople, J. A. Gaussian 03, Inc., Pittsburgh PA, 2003.

[2] a) Stephens, P.J.; Harada, N. Chirality 2010, 22, 229-233. b) Bringmann, G.;
Bruhm, T.; Maksimenka, K.; Hemberger, Y. Eur. J. Org. Chem. 2009, 2717-2727. c)
Bringmann, G.; Gulder, T. A. M.; Reichert, M.; Gulder, T. Chirality 2008, 20, 628-642.

Figure S1. The experimental and calculated CD spectrum of chiral product **12a**: The absolute configuration of **12a** could be confirmed as corresponding configuration in comparison to that of the following calculated CD spectrum.

(a) Calculated CD spectra

(b) Calculated CD spectra

(c) Experimental CD spectra: Band width 2 nm; Response 1 sec; Sensitivity Standard;

Data pitch 0.1 nm; Scanning speed 500 nm/min. c = 0.125mmol/L.

Results:

Figure S2. The experimental and calculated CD spectrum of chiral product **13**: The absolute configuration of **13** could be confirmed as corresponding configuration in comparison to that of the following calculated CD spectrum.

(a) Calculated spectra

(b) Calculated spectra

(c) Experimental CD spectra: Band width 2 nm; Response 1 sec; Sensitivity Standard; Data pitch 0.1 nm; Scanning speed 500 nm/min. c = 0.125mmol/L.

Result:

7. NMR and HRMS Charts of Betti bases and it derivatives

S29

	Ma	ass Sp	ectrun	n Sm	artFor	mula	Repor	rt		
Analysis Info							cquisition Date 1/1		15/2015 2:44:16 PM	
Analysis Name Method	D:\Data\Xuliwen\Q-TOF-xulw150115-wcy-1106_03.d tune_100-550_pos150115.m						Operator Jiang			
Sample Name Comment	trz-7						rument / Se	OF-Q II 1032	24	
Acquisition Par	ameter									
Source Type	ESI	lon	on Polarity		Positive		Set Nebulizer		0.4 Bar	
Focus	Active	Set	Set Capillary		4500 V		Set Dry H	leater	200 °C	
Scan Begin	50 m/z	Set	Set End Plate Offset		-500 V		Set Dry G	Sas	2.2 l/min	
Scan End	550 m/z	Set	Set Collision Cell RF		120.0 Vpp		Set Diver	t Valve	Source	
Intens. x10 ⁵									+MS, 0.2	2-0.4min
2.0-										
				384	.1944					
1.5-										
-										
1.0										
1										
0.5										
					11.				406.17	62
360	365 370	375	38	0	385	390	395	400	405	m/z
Meas. m/z	# Formula	Score	m/z	err [mDa]	err [ppm]	mSigma	rdb e [−] C	onf N-Rule		
384.1944	1 C 26 H 26 N O 2	100.00	384.1958	1.4	3.5	2.7	14.5 even	ı ok		
406.1762	1 C 26 H 25 N Na C	0.2 100.00	406.1778	1.6	3.9	5.2	14.5 even	ı ok		

Bruker Compass DataAnalysis 4.0

printed: 1/15/2015 7:37:36 PM

Page 1 of 1

	Ma	ss Sp	ectrun	<u>ו Sm</u>	artFor	mula	Report				
Analysis Info							uisition Date	1/15/20	1/15/2015 2:38:48 PM		
Analysis Name Method	D:\Data\Xuliwen\Q-TOF-xulw150115-wcy-1108_01.d tune_100-550_pos150115.m						Operator Jiang				
Comment	trz-/					Inst	rument / Ser#	f micrO I	OF-Q II 1032	24	
Acquisition Par	rameter										
Source Type	ESI		Ion Polarity		Positive	Set Nebulizer		er	0.4 Bar		
Focus	Active		Set Capillary		4500 V		Set Dry Heater		200 °C		
Scan Begin	50 m/z		Set End Plate Offset		-500 V		Set Dry Gas		2.2 l/min		
Intens. x10 ⁵ 2.0 1.5 1.0				384	.1962				+MS, 0.2	2-0.5min	
0.5									406.17	75	
360 Meas. m/z	365 370 # Formula	375 Score	38 m/z	0 err [mDa]	385 err [ppm]	390 mSigma	395 rdb e Con	400 f N-Rule	405	m/z	
384.1962	1 C 26 H 26 N O 2 1 C 26 H 25 N Na O	2 100.00	384.1958	-0.4	-1.1	17.0	14.5 even	ok			
406.1775	1 0 20 H 25 N Na U	2 100.00	400.1776	0.3	0.0	10.5	14.5 even	OK			

Bruker Compass DataAnalysis 4.0

printed: 1/15/2015 7:39:33 PM

Page 1 of 1

Bruker Compass DataAnalysis 4.0

printed: 1/15/2015 8:24:10 PM

Page 1 of 1

Mass Spectrum SmartFormula Report										
Analysis Info	alysis Info						1/15/20	15/2015 2:23:43 PM		
Analysis Name Method	D:\Data\Xuliwen\Q-TOF-xulw150115-wcy-1114_01.d tune_100-550_pos150115.m					erator	Jiang			
Sample Name Comment	trz-7		Inst	Instrument / Ser# micrOTOF-Q II 10324			24			
Acquisition Par	rameter									
Source Type	ESI	Ion Polarity		Positive		Set Nebulizer		0.4 Bar		
Focus	Active	Set	Set Capillary			Set Dry Heate	er	200 °C		
Scan Begin	50 m/z	Set End Plate Offset		-500 V		Set Dry Gas		2.2 l/min		
Scan End	550 m/z	Set	Collision Cell RF	120.0 Vpp)	Set Divert Va	lve	Source		
Intens. x10 ⁵								+MS, 0.1	-0.6min	
				384.1953						
1.5-										
1.0										
0.5										
0.0								406.17	67	
360	365 370	375	380	385	390	395	400	405	m/z	
Meas. m/z	# Formula	Score	m/z err [n	nDa] err (ppm] mSigma	rdb e ⁻ Conf	N-Rule			
384.1953	1 C 26 H 26 N O 2	100.00	384.1958	0.5 1.4	11.8	14.5 even	ok			
406.1767	1 C 26 H 25 N Na O	2 100.00	406.1778	1.1 2.6	0 10.0	14.5 even	ok			

printed: 1/15/2015 7:45:28 PM

printed: 1/15/2015 7:41:03 PM

1/15/2015 8:09:33 PM printed:

Page 1 of 1

S41

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name D:\Data\Xuliwen\Q-TOF-xulw-cyw01_01.d tune-pos_200-600_130305.m Q-TOF-Xuliwen-YW-Y4-140114_03 Method

Acquisition Date 3/5/2014 2:53:22 PM

Jiang Operator

Sample Name Comment

Instrument / Ser# micrOTOF-Q II 10324

XLW-CY-7115 PROTON CDC13 {D:\20141108} root 41

printed: 1/15/2015 7:49:54 PM

printed: 1/15/2015 7:50:55 PM

	Ma	iss Spectrum Si	martFor	mula	a Report						
Analysis Info		Ad	quisition Date	1/15/20	5/2015 1:55:20 PM						
Analysis Name Method Sample Name Comment	nalysis Name D:\Data\Xuliwen\Q-TOF-xulw150115-wcy-1104_01.d ethod tune_100-550_pos150115.m ample Name trz-7 omment					Operator Jiang Instrument / Ser# micrOTOF-Q II 10324					
Acquisition Par	rameter										
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 550 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 120.0 Vpp		Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	er ter alve	0.4 Bar 200 °C 2.2 I/min Source				
Intens. x10 ⁴ -							+MS, 0.3	3-0.4min			
6-			500.2975								
4-											
2-					522.2784	ı					
0 45	58.2478	· · · · · · · · · · · · ·	<u> </u>								
450	460 470	480 490	500	510	520	530	540	m/z			
Meas. m/z 500.2975 522.2784	 # Formula 1 C 36 H 38 N O 1 C 36 H 37 N Na C 	Score m/z err [mD 100.00 500.2948 -2 100.00 522.2767 -1	a] err [ppm] .7 -5.4 .6 -3.1	mSigma 23.1 9.9	rdb e Conf 18.5 even 18.5 even	N-Rule ok ok					

printed: 1/15/2015 8:03:43 PM

printed: 1/15/2015 8:00:11 PM

printed: 1/15/2015 8:07:19 PM

printed: 1/15/2015 8:05:24 PM

printed: 1/15/2015 8:18:37 PM

S58

printed: 1/15/2015 7:53:13 PM

printed: 1/21/2015 8:22:09 AM

printed: 1/15/2015 7:57:56 PM

Page 1 of 1

S66

printed: 1/15/2015 7:56:51 PM

printed: 1/15/2015 8:14:06 PM

printed: 1/20/2015 7:49:02 PM

80 70 60 50 40 30 20 10

210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm)

printed: 1/20/2015 7:40:13 PM

printed: 1/20/2015 7:51:10 PM

printed: 1/20/2015 7:37:49 PM

S81

printed: 3/13/2015 6:10:57 PM

printed: 1/23/2015 11:09:21 AM

printed: 1/23/2015 11:04:16 AM

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name Method Sample Name

D:\Data\Xuliwen\Q-TOF-xulw140106-wcy-CTWSBnCP_01.d tune-pos_100-500_140106.m CTWSBnCP

Acquisition Date 1/6/2014 12:57:11 PM

Jiang

- 0

¥ μ

- 3.00

0.14

Operator Instrument / Ser# micrOTOF-Q II 10324

111 민구나 1:30 1:86

10.0

ppm (t1)

¥ 0.86

5.0

ų

- 0.95

printed: 1/20/2015 7:45:56 PM

printed: 1/20/2015 7:43:50 PM

printed: 1/23/2015 11:01:48 AM

Page 1 of 1

S95

printed: 1/23/2015 11:50:05 AM

printed: 3/13/2015 6:12:48 PM

printed: 3/13/2015 6:16:08 PM

Mass Spectrum SmartFormula Report

Analysis Info

 Analysis Name
 D:\Data\Xuliwen\Q-TOF-xulw-20141022-CY-2_01.d

 Method
 tune-posAPCI-100-700_140930.m

 Sample Name
 CY-2

Acquisition Date 10/22/2014 6:00:05 PM

Operator Jiang Instrument / Ser# micrOTOF-Q II 10324

8. HPLC of chiral Betti base-derived amino alcohols 12a and all-substituted pyrrolidine derivative 13

S107

