Supporting Information

Prenylated Benzoylphloroglucinols and from the

Leaves of Garcinia multiflora

Wenwei Fu,^{a,b} Man Wu,^{a,b} Lunlun Zhu,^{a,b} Yuanzhi Lao,^{a,b} Liping Wang,^{a,b} Hongsheng Tan,^{a,b} Qinghong Yuan^c and Hongxi Xu*^{a,b}

^a School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai 201203, People's Republic of China

^b Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, People's Republic of China

^c Department of Physics, East China Normal University, Dongchuan Road 500, Shanghai 200241, People's Republic of China

* To whom correspondence should be addressed. Fax: +86-21-51323089; Tel: +86-21-51323089; E-mail: xuhongxi88@gmail.com.

List of Supporting Information

Part 1 Experimental Section

Computational details

Part 2 Results and HRESIMS, ECD, IR, and NMR spectra of compounds 1-6

Table S1. Cytotoxic IC₅₀ Values of Crude Extracts and Key Fractions against Cancer Cell Lines

Figure CS1. Most stable conformers of (1*S*, 5*S*, 7*S*)-1 calculated with DFT at the B3LYP/6-31G (d, p) level

Table CS1. Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized **1** at B3LYP/6-31G(d,p) level in gas phase

Figure CS2. Optimized geometries of predominant conformers for 2 (a–j) at the B3LYP/6-31G(d,p) level in gas phase

Table CS2. Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized **2** at B3LYP/6-31G(d,p) level in gas phase

Figure CS3. Optimized geometries of predominant conformers for 3 (a-h) at the B3LYP/6-31G(d,p) level in gas phase

Table CS3. Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized **3** at B3LYP/6-31G(d,p) level in gas phase

Garcimultiflorone H (1)

Figure S1. HRESIMS spectrum of 1

Figure S2. Experimental UV spectrum of 1

Figure S3. Experimental ECD spectrum of 1

Figure S4. IR (KBr, disc) spectrum of 1

2

Figure S5. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of **1**

Figure S6. 13 C NMR spectrum (CD₃OD, 151 MH_Z) of **1**

Figure S7. DEPT NMR spectrum (CD₃OD, 151 MH_Z) of 1

Figure S8. HSQC NMR spectrum (CD₃OD, 600 MH_Z, 100 MH_Z) of 1

Figure S9. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 100 MH_Z) of 1

Figure S10. TOCSY NMR spectrum (CD₃OD, 600 MH_Z) of 1

Figure S11. NOSEY NMR spectrum (CD₃OD, 600 MH_Z) of 1

Garcimultiflorone I (2)

Figure S12. HRESIMS spectrum of 2

Figure S13. Experimental ECD spectrum of 2

Figure S14. IR (KBr, disc) spectrum of 2

Figure S15. ¹H NMR spectrum (DMSO- d_6 , 400 MH_Z) of **2**

Figure S16. ¹³C NMR spectrum (DMSO- d_6 , 151 MH_Z) of 2

Figure S17. DEPT NMR spectrum (DMSO-*d*₆, 151 MH_Z) of 2

Figure S18. HSQC NMR spectrum (DMSO-d₆, 600 MH_Z, 151 MH_Z) of 2

Figure S19. HMBC NMR spectrum (DMSO-d₆, 600 MH_Z, 151 MH_Z) of 2

Figure S20. TOCSY NMR spectrum (DMSO-d₆, 600 MH_Z) of 2

Figure S21. NOSEY NMR spectrum (DMSO-*d*₆, 600 MH_Z) of 2

Garcimultiflorone J (3)

Figure S22. HRESIMS spectrum of 3

Figure S23. Experimental UV spectrum of 3

Figure S24. Experimental ECD spectrum of 3

Figure S25. IR (KBr, disc) spectrum of 3

Figure S26. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of **3**

Figure S27. ¹³C NMR spectrum (CD₃OD, 151 MH_Z) of $\mathbf{3}$

Figure S28. DEPT NMR spectrum (CD₃OD, 151 MH_Z) of 3

Figure S29. HSQC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 3

Figure S30. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 3

Figure S31. TOCSY NMR spectrum (CD₃OD, 600 MH_Z) of 3

Figure S32. NOSEY NMR spectrum (CD₃OD, 600 MH_Z) of 3

Multiflorabiphenyl B (4):

Figure S33. HRESIMS spectrum of 4

Figure S34. UV spectrum of 4

Figure S35. IR (KBr, disc) spectrum of 4

Figure S36. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of 4

Figure S37. ¹³C NMR spectrum (CD₃OD, 151 MH_Z) of 4

Figure S38. DEPT NMR spectrum (CD₃OD, 151 MH_z) of 4

Figure S39. HSQC NMR spectrum (CD₃OD, 600 MHz, 151 MHz) of 4

Figure S40. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 4

Multiflorabiphenyl C (5):

Figure S41. HRESIMS spectrum of 5

Figure S42. UV spectrum of 5

Figure S43. IR (KBr, disc) spectrum of 5

Figure S44. ¹H NMR spectrum (DMSO- d_6 , 400 MH_Z) of **5**

Figure S45. ¹³C NMR spectrum (DMSO- d_6 , 101 MH_Z) of 5

Figure S46. DEPT NMR spectrum (DMSO-d₆, 101 MH_Z) of 5

Figure S47. HSQC NMR spectrum (DMSO-d₆, 400 MH_Z, 101 MH_Z) of 5

Figure S48. HMBC NMR spectrum (CD₃OD, 400 MH_Z, 101 MH_Z) of 5

Multiflorabiphenyl C (6):

Figure S49. HRESIMS spectrum of 6

Figure S50. UV spectrum of 5

Figure S51. IR (KBr, disc) spectrum of 6

Figure S52. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of $\mathbf{6}$

Figure S53. ¹³C NMR spectrum (CD₃OD, 151 MH_Z) of 6

Figure S54. DEPT NMR spectrum (CD₃OD, 151 MH_Z) of 6

Figure S55. HSQC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 6

Figure S56. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 150 MH_Z) of 6

GF-ox1: the reaction products by the oxidation of guttiferone F

Figure S57. HPLC and LC-MS of GF-ox1

- **Figure S58.** ¹H NMR spectrum (CD₃OD, 600 MH_Z) of GF-ox1 and superimposed ¹H NMR spectrum of GF-ox1 on Garcimultiflorone J (**3**)
- **Figure S59.** ¹³C NMR spectrum (CD₃OD, 151 MH_z) of GF-ox1 and superimposed ¹H NMR spectrum of GF-ox1 on Garcimultiflorone J (**3**)

Figure S60. HSQC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of GF-ox1 **Figure S61.** HMBC NMR spectrum (CD₃OD, 600 MH_Z, 150 MH_Z) of GF-ox1

Supporting Information Available

Part 1 Experimental section

Computational details

The theoretical calculations of compounds 1-3 was performed using Gaussian 09.¹ Conformational analysis was initially carried out using Maestro in Schrödinger 2010 conformational searching, together with the OPLS_2005 molecular mechanics methods. The optimized conformation geometries and thermodynamic parameters of all conformations were provided. The top twenty lowest energy conformers of the OPLS_2005 conformers were optimized further at B3LYP/6-31G (d, p) level. The minimum nature of the structure was confirmed by frequency calculations at the same computational level. The theoretical calculation of ECD was performed using time dependent Density Functional Theory (TDDFT) at B3LYP/6-31G (d, p) level in MeOH with PCM model. The calculated ECD curves were generated using SpecDis 1.62².

References:

(1) Gaussian 03, revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.
 A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M.
 Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.
 A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
 Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B.
 Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
 Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
 Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O.

Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G.
Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez,
J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

(2) T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, SpecDis version 1.62, University of Wuerzburg, Germany, 2014.

Part 2 Results and HRESIMS, ECD, IR, and NMR spectra of compounds 1-6.

1.	Table S1. C	ytotoxic	IC ₅₀	Values o	of Crude	Extracts	and Key	Fractions again	nst Cancer	· Cell Lines
		•/	~~~				•/			

Fraction	HeLa	SGC7901	TE1	HCT116	Capan 2	HL-7702
Ι	91.13 ± 4.65	92.01 ± 9.15	72.44 ± 6.52	72.58 ± 3.61	>100	62.52 ± 0.55
II	22.53±1.83	23.33±0.20	21.81 ± 0.89	20.81 ± 0.94	36.91±0.75	27.16±2.33
III	>100	>100	>100	>100	>100	>100
IV	>100	>100	>100	>100	>100	>100
Paclitaxel	0.54 ± 0.35	0.34 ± 0.02	0.25 ± 0.025	0.16 ± 0.021	3.50±0.18	0.24 ± 0.06

Table S1. Cytotoxic IC₅₀ Values of Crude Extracts and Key Fractions against Cancer Cell Lines ^a

a. Results are expressed as mean IC_{50} values in µg/ml (Extracts) or µM (Paclitaxel). I: Extracts with acetone from the leaves of *G. multiflora*; II: Extracts from I on silica gel eluted by CH₂Cl₂; III: Extracts from I on silica gel eluted by CH₂Cl₂-MeOH (9:1, v/v); IV: Extracts from I on silica gel eluted by CH₂Cl₂-MeOH (1:1, v/v).

2. Figue CS1 Optimized geometries of predominant conformers for 1 (a-j)

Optimized geometries of predominant conformers for **1** (**a**–**j**) at the B3LYP/6-31G (d, p) level in MeOH with PCM model

B3LY P/6-31G (d, p) level in MeOH with PCM model.						
Conformations	G	⊿E	%			
1a	-1734.188528	0.00	46.17			
1b	-1734.187682	0.53	18.83			
1c	-1734.187238	0.81	11.76			
1d	-1734.186488	1.28	5.31			
1e	-1734.186236	1.44	4.06			
1 f	-1734.186121	1.51	3.60			
1g	-1734.185879	1.66	2.78			
1h	-1734.185724	1.76	2.36			
1i	-1734.185229	2.07	1.40			
1j	-1734.185155	2.12	1.29			

3. Table CS1. Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized 1 at B3LYP/6-31G (d, p) level in MeOH with PCM model.

Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized **1** at B3LYP/6-31G (d, p) level in MeOH with PCM model .

⊿E: Relative to 1a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors

4. Figure CS2. Optimized geometries of predominant conformers for 2 (a–j) at the B3LYP/6-31G (d, p) level in MeOH with PCM model

Optimized geometries of predominant conformers for **2** (**a**–**j**) at the B3LYP/6-31G (d, p) level in MeOH with PCM model

5. Table CS2. Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the

optimized 2 at B3LYP/6-31G (d, p) level in MeOH with PCM model.

Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized 2 at

B3LYP/6-31G	(d, p)	level in	MeOH	with	PCM	model.
-------------	--------	----------	------	------	-----	--------

Conformations	G	ΔE	%
2a	-1732.975785	0.00	30.42
2b	-1732.975286	0.31	17.91
2c	-1732.975037	0.47	13.77
2d	-1732.974819	0.61	10.92
2e	-1732.974099	1.06	5.09

2f	-1732.974079	1.07	4.99
2g	-1732.974027	1.10	4.72
2h	-1732.973836	1.22	3.85
2i	-1732.973595	1.37	2.98
2j	-1732.97296	1.77	1.52

 Δ E: Relative to 1a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors

6. Figure CS3. Optimized geometries of predominant conformers for 3 (a-h) at the B3LYP/6-31G (d, p) level in MeOH with PCM model

Optimized geometries of predominant conformers for **3** (**a**–**h**) at the B3LYP/6-31G (d, p) level in MeOH with PCM model

7. **Table CS3.** Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized **3** at B3LYP/6-31G (d, p) level in MeOH with PCM model

Calculated Relative Energies (Kcal/mol) and Boltzmann distributions of the optimized **3** at B3LYP/6-31G (d, p) level in MeOH with PCM model.

Conformations	G	ΔE	%
3a	-1928.319848	0.00	28.65
3b	-1928.319661	0.12	23.5
3c	-1928.319265	0.37	15.44
3d	-1928.31881	0.65	9.53
3e	-1928.318669	0.74	8.21
3f	-1928.318572	0.80	7.41
3g	-1928.317915	1.21	3.69
3h	-1928.317733	1.33	3.04

⊿E: Relative to 1a; %: Boltzmann distributions, using the relative Gibbs free energies as weighting factors

Figure S1. HRESIMS spectrum of 1

Figure S2. Experimental UV spectrum of 1

Figure S3. Experimental ECD spectrum of 1

Figure S4. IR (KBr, disc) spectrum of 1

Figure S5. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of $\mathbf{1}$

Figure S6. ¹³C NMR spectrum (CD₃OD, 151 MH_Z) of $\mathbf{1}$

Figure S7. DEPT and 13 C NMR spectrum (CD₃OD, 151 MH_Z) of **1**

Figure S8. HSQC NMR spectrum (CD₃OD, 600 MH_z, 151 MH_z) of $\mathbf{1}$

Figure S9. HMBC NMR spectrum (CD₃OD, 600 MH_z, 151 MH_z) of $\mathbf{1}$

Figure S10. TOCSY NMR spectrum (CD₃OD, 600 MH_Z) of 1

Figure S11. NOESY NMR spectrum (CD₃OD, 600 MH_Z) of $\mathbf{1}$

Figure S12. HRESIMS spectrum of 2

Figure S13. Experimental UV spectrum of 2

Figure S13. Experimental ECD spectrum of 2

Figure S14. IR (KBr, disc) spectrum of 2

Figure S17. DEPT and 13 C-NMR spectrum (DMSO- d_6 , 100 MH_Z) of 2

Figure S18. HSQC NMR spectrum (DMSO- d_6 , 600 MH_Z, 151 MH_Z) of 2

Figure S19. HMBC NMR spectrum (DMSO- d_6 , 600 MH_Z, 151 MH_Z) of 2

Figure S20. TOCSY NMR spectrum (DMSO- d_6 , 600 MH_Z) of 2

Figure S21. NOSEY NMR spectrum (DMSO- d_6 , 600 MH_Z) of 2

Figure S22. HRESIMS spectrum of 3

Figure S23. Experimental UV spectrum of 3

Figure S24. Experimental ECD spectrum of 3

Figure S25. IR (KBr, disc) spectrum of 3

Figure S26. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of **3**

Figure S27. ¹³C NMR spectrum (CD₃OD, 150 MH_Z) of **3**

Figure S28. DEPT NMR spectrum (CD₃OD, 150 MH_Z) of 3

Figure S29. HSQC NMR spectrum (CD₃OD, 600 MH_Z, 150 MH_Z) of 3

Figure S30. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 150 MH_Z) of $\bf 3$

Figure S31. TOCSY NMR spectrum (CD₃OD, 600 MH_z) of $\mathbf{3}$

Figure S32. NOSEY NMR spectrum (CD₃OD, 600 MH_Z) of 3

Figure S33. HRESIMS spectrum of 4

Figure S34. UV spectrum of 4

Figure S35. IR (KBr, disc) spectrum of 4

Figure S36. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of 4

Figure S37. ¹³C NMR spectrum (CD₃OD, 151 MH_z) of 4

Figure S38. DEPT and 13 C NMR spectrum (CD₃OD, 151 MH_Z) of 4

Figure S39. HSQC NMR spectrum (CD₃OD, 600 MHz, 151 MHz) of 4

Figure S40. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 4

Figure S42. UV spectrum of 5

Figure S43. IR (KBr, disc) spectrum of 5

Figure S44. ¹H NMR spectrum (DMSO- d_6 , 400 MH_Z) of 5

Figure S45. ¹³C NMR spectrum (DMSO- d_6 , 101 MH_Z) of 5

Figure S46. DEPT and 13 C NMR spectrum (DMSO- d_6 , 101 MH_Z) of 5

Figure S47. HSQC NMR spectrum (DMSO-d₆, 400 MH_Z, 101 MH_Z) of 5

Figure S48. HMBC NMR spectrum (DMSO- d_6 , 400 MH_Z, 101 MH_Z) of 5

Figure S49. HRESIMS spectrum of 6

Figure S50. UV spectrum of 5

Figure S51. IR (KBr, disc) spectrum of 6

Figure S52. ¹H NMR spectrum (CD₃OD, 600 MH_Z) of 6

Figure S53. ¹³C NMR spectrum (CD₃OD, 151 MH_z) of 6

Figure S54. DEPT and 13 C NMR spectrum (CD₃OD, 151 MH_z) of 6

Figure S55. HSQC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 6

Figure S56. HMBC NMR spectrum (CD₃OD, 600 MH_Z, 151 MH_Z) of 6

Figure S57. HPLC and LC-MS of GF-ox1

HPLC conditions: All separations were performed on a Shim-pack VP-ODS C18 HPLC Column (4.6 mm \times 250 mm, 4.5 μ m, GL/Shimaduz, Japan). The mobile phase consisted of (A) 0.1% formic acid in water and (B) acetonitrile with the following gradient elution: 0–15 min, 30-100% B; 16–35 min, 100% B. The injection volume was 5.0 μ L and the flow rate at 1.0 ml/min.

Figure S58. 1 H NMR spectrum (CD₃OD, 600 MH_Z) of GF-ox1 and superimposed 1 H NMR spectrums

Figure S59. ¹³C NMR spectrum (CD₃OD, 151 MH_z) of GF-ox1 and superimposed ¹H NMR spectrum of GF-ox1 on Garcimultiflorone J

Figure S60. HSQC NMR spectrum (CD₃OD, 600 MHz, 151 MHz) of of GF-ox1

Figure S61. HMBC NMR spectrum (CD₃OD, 600 MHz, 150 MHz) of GF-ox1