Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary:

Table	S1. Main ge	eometrical p	arameters in	angstrom and	l degree at the B3L	YP/6-31G	(d) level in th	ie gas phase.					
			Step 1						Step 2				
	H65–H66	C50-C54	C50-H65	C54–H66	H66C54C50H65		H65–H66	C49-C55	C49-H65	C55-H66	H65C49C55H66		
R	0.74279	1.43964	25.49375	25.76662	0.25467	R	0.74279	1.44351	25.38136	25.48872	-1.16085		
TS 1	1.48172	1.52634	1.26153	1.60926	3.14320	TS 2	1.57000	1.42000	1.45042	1.47036	2.14345		
IM 1	2.29311	1.60819	1.09801	1.09697	0.05832	IM 2	2.28590	1.62380	1.09760	1.09700	3.47794		
			Step 3			Step 4							
	H67–H68	C49–C55	C49–H67	С55-Н68	H67C49C55H68		H67–H68	C50-C54	C50-H67	C54–H68	H67C50C54H68		
IM 1	0.74280	1.37880	20.02462	20.72177	1.05596	IM 2	0.74279	1.38157	10.09701	10.01646	1.17080		
TS 3	0.96856	1.57883	1.41007	1.96570	2.03237	TS 4	1.26289	1.52563	1.22591	2.46714	-0.07264		
IM 3	2.27847	1.59807	1.09503	1.09894	9.73668	IM 3	2.27957	1.58871	1.09497	1.09894	-7.10548		
			Step 5						Step 6				
	H69–H70	C46-C53	C46-H70	С53-Н69	H69C53C46H70		H67–H68	C45–C52	C45-H67	С52–Н68	H68C52C45H67		
IM 3	0.74279	1.42439	12.04381	12.44833	1.27364	IM 4	0.74279	1.38043	19.71290	20.69387	2.96779		
TS 5	0.84267	1.38862	1.90000	1.57323	0.78645	TS 6	1.10425	1.53704	1.34009	2.14189	-0.49322		
IM 4	2.29768	1.60884	1.09811	1.09733	2.09042	IM 5	2.27904	1.59616	1.09517	1.09908	-9.82709		
			Step 7						Step 8				
	H74–H73	C57–C58	С57-Н73	С58-Н74	H74C58C57H73		H72–H71	C56–C59	С56-Н72	С59–Н71	H71C59C56H72		
IM 5	0.74279	1.36926	11.49898	12.14062	-3.47135	IM 6	0.74279	1.33625	12.55806	12.85920	2.80621		
TS 7	2.06409	1.51082	1.13449	1.93176	-13.25617	TS 8	0.97000	1.36676	1.74435	1.94324	-4.20058		
IM 6	2.17851	1.59148	1.09807	1.09392	-2.64271	Р	2.16428	1.56457	1.09276	1.10704	-20.17012		

Table S	52. Main geo	metrical pa	rameters in	angstrom a	nd degree at the	B3LYF	P/6-31G (d)	level in de	calin.		
			Step 1						Step 2		
	H65–H66	C50–C54	С50-Н65	C54–H66	H66C54C50H65		H65–H66	C49–C55	C49–H65	С55-Н66	H65C49C55H66
R	0.74293	1.43947	12.26726	12.47615	-1.62325	R	0.74293	1.44339	13.52460	14.83953	-2.25048
TS 1	1.57582	1.52501	1.16324	2.17197	3.00972	TS 2	0.98813	1.59153	1.58848	1.32030	-5.99214
IM 1	2.29160	1.60759	1.09761	1.09656	0.10524	IM 2	2.28590	1.62293	1.09707	1.09633	3.59291
	Step 3 Step 4										
	H67–H68	C49–C55	C49–H67	C55-H68	H67C49C55H68		H67–H68	C50-C54	C50-H67	C54–H68	H67C50C54H68
IM 1	0.74294	1.37877	12.00212	12.59872	1.60553	IM 2	0.74293	1.38195	10.10112	10.01716	1.19221
TS 3	1.12009	1.55326	1.28325	2.34962	2.68129	TS 4	1.41386	1.51789	1.18228	2.71785	-0.87758
IM 3	2.27868	1.59769	1.09442	1.09832	9.69548	IM 3	2.27810	1.58796	1.09439	1.09837	-7.07234
			Step 5						Step 6		
	H69–H70	C46–C53	C46–H70	С53-Н69	H69C53C46H70		H67–H68	C45–C52	С45-Н67	С52-Н68	H68C52C45H67
IM 3	0.74293	1.42457	12.04385	12.44836	1.27315	IM 4	0.74293	1.38073	15.25130	15.05599	2.60435
TS 5	2.00458	1.51298	2.94785	1.13627	-31.70700	TS 6	1.32986	1.51933	1.21934	2.56764	-1.48768
IM 4	2.29659	1.60971	1.09786	1.09654	2.11869	IM 5	2.27917	1.59583	1.09469	1.09854	-9.79607
			Step 7						Step 8		
	H74–H73	C57–C58	С57–Н73	С58–Н74	H74C58C57H73		H72–H71	C56–C59	C56–H72	С59-Н71	H71C59C56H72
IM 5	0.74293	1.36950	11.50045	12.14342	-3.47394	IM 6	0.74293	1.33630	12.56147	12.86253	-2.80722
TS 7	1.93675	1.48190	1.13117	2.49851	-1.96193	TS 8	0.97000	1.36676	1.74435	1.94324	-4.20058
IM 6	2.17896	1.59103	1.09750	1.09326	-2.64720	Р	2.16461	1.56440	1.09215	1.10612	-20.24844

their seco	nd-order per	rturbatio	n stabilizati	on energ	gies E(2) (k	cal. mol ⁻¹)					
			Step 1					St	ep 2		
		E(2) in	the gas phase	E(2) in de	ecalin			E(2) in th	ne gas phase	E(2) in deca	alin
Donor	Acceptor	R	TS1	R	TS1	Donor	Acceptor	R	TS2	R	TS2
	$\pi^*_{C26-C35}$	3.10	3.07	3.11	2.90	$\pi_{C34-C49}$	$\pi^*_{C49-C55}$	1.50	1.40	1.51	1.00
$\pi_{050,054}$	$\sigma^*_{ m C50-H65}$		0.82		2.08	$\pi_{C42-C55}$	$\pi^{*}_{~{ m C49-C55}}$	1.54	1.63	1.54	1.35
050-054	$\pi^{*}_{C48-C54}$	1.64	1.43	1.64	1.01	$\pi_{C49-C55}$	$\pi^{*}_{C49-C50}$	2.96	2.14	2.97	1.16
	$\pi^{*}_{C49-C50}$	2.85	1.90	2.89	1.55	$\sigma_{ m C49-H65}$	$\pi^{*}_{C55-C58}$		4.06		
	$\pi^{*}_{C54-C57}$	2.89	2.66	2.90	1.77	$\pi_{C55-C58}$	$\pi^{*}_{C49-C55}$	2.64	1.57	2.63	1.60
	$\pi^{*}_{C26-C35}$		5.46		4.71	σ	$\pi^{*}_{C34-C49}$		2.08		0.58
$\sigma_{C50-H65}$	$\sigma^*_{C50-H65}$		0.63		0.89	С55-Н66	$\pi^{*}_{C49-C50}$		2.77		
0.50-1105	$\pi^{*}_{C54-C57}$		1.18		0.71		$\pi^{*}_{C57-C58}$		4.44		4.01
	$\pi^*_{ ext{C49-C55}}$		6.99		6.10			St	ep 4		
$\pi_{\rm C54-C57}$	$\pi^*_{ ext{C50-C54}}$	1.65	2.16	2.60				E(2) in the	gas phase	E(2) in deca	alin
$\pi_{C35-C50}$	$\pi^*_{ ext{C50-C54}}$	1.64	1.21	1.65	1.09	Donor	Acceptor	IM 2	TS4	IM 2	TS4
	$\sigma^*_{ m C50-H65}$		0.74		0.71	$\pi_{C48-C54}$	$\pi^{*}_{C50-C54}$	2.46	1.37	2.45	1.35
$\pi_{_{\mathrm{C48-C54}}}$	$\pi^*_{C50-C54}$	1.59	1.27	1.59	1.17		$\sigma^{*}_{C50-H65}$		2.01		1.80
$\pi_{_{C49-C50}}$	$\sigma^{*}_{ m C50-H65}$		0.88		1.89	$\pi_{C50-C54}$	$\pi^*_{ ext{C54-C57}}$	3.25	2.11	3.26	2.26
$\sigma_{ m C54-H66}$	$\sigma^{*}_{ m C50-H65}$		2.06				$\pi^{*}_{C35-C50}$	2.24	1.61	1.21	1.07
		Step	3				$\pi^{*}_{C49-C50}$	2.08	0.64	2.08	0.60
		E(2) in	the gas phase	E(2) in de	ecalin	$\pi_{ m C54-C57}$	$\pi^{*}_{C50-C54}$	3.34	1.99	3.37	2.05
Donor	Acceptor	IM 1	TS3	IM 1	TS3	$\sigma_{_{ m C50-H67}}$	$\pi^{*}_{C26-C35}$		7.61		6.10
$\pi_{\mathrm{C34-C49}}$	$\pi^*_{_{C49-C55}}$	2.31	0.81	2.30	0.99	$\sigma^*_{ m C50-H67}$	RY^*_{H67}		18.89		19.38
	$\sigma^{*}_{ m C50-H67}$		2.75			$\sigma_{_{ m C50-H68}}$	LP_{H68}		11.69		4.97
$\pi_{C42-C55}$	$\pi^*_{ ext{C49-C55}}$	2.70	0.93	2.69	1.13	LP _{H68}	$\sigma^{*}_{ m C50-H67}$		66.81		44.26
$\pi_{ m C49-C50}$	$\pi^*_{ ext{ C49-C55}}$	2.74	0.62	2.76	0.82			St	ep 6		
	$\sigma^{*}_{ m C50-H67}$		0.73		0.77			E(2) in the	ne gas phase	E(2) in deca	alin
$\pi_{C49-C55}$	$\pi^{*}_{C55-C58}$	3.45	1.84	3.45	2.23	Donor	Acceptor	IM 4	TS 6	IM	TS 6

Table S3. Significant natural bond orbital interactions of the reactant, intermediates and TSs in gas phase and decalin within their second-order perturbation stabilization energies E(2) (kcal. mol⁻¹)

	$\pi^{*}_{C42,C55}$	2.23	0.75	2.22	1.07	$\pi^{*}_{C45,C52}$	3.39	2.02	3.40	4	2.14
$\sigma_{_{ m C50-H67}}$	$\pi^{*}_{C49-C55}$		1.49		1.77	$\pi_{C45-C46}$	$\pi^{*}_{C45-C52}$	2.68	0.95	2.69	0.97
$\sigma_{_{ m C54-H68}}$	$\pi^{*}_{C49,C50}$		0.88		0.85		$\sigma^*_{\mu_{67}\mu_{68}}$		6.02		
$\pi_{_{C55-C58}}$	$\pi^{*}_{C49-C55}$	3.25	1.40	3.25	1.76	$\pi_{C43-C52}$	$\pi^{*}_{C45-C52}$	2.61	1.45	2.59	1.43
		Step5				$\pi_{C45,C52}$	$\pi^{*}_{C43-C52}$	2.14	1.18	2.13	1.30
		E(2) in t	he gas phase	E(2) in de	ecalin	043-032	$\pi^*_{ ext{C40-C45}}$	1.98	1.24	1.97	1.04
Donor	Acceptor	IM 3	TS5	IM 3	TS5		$\sigma^{*}_{_{ m H67-H68}}$		9.42		
π _{C37-C46}	$\pi^*_{C46-C53}$	1.75	0.67	1.76	1.33	CR _{C52}	<i>RY</i> [*] _{C45}	2.02	0.83	2.05	0.75
π C45-C46	$\pi^*_{ ext{C46-C53}}$	2.74	1.50	2.74	2.13	$\sigma_{\rm He7, He8}$	LP _{C52}		93.18		
π _{C53-C56}	$\pi^*_{C46-C53}$	2.86	2.07	2.86	1.35	107-1108	$\pi^{*}_{C52-C59}$		13.80		
<i>CR</i> _{C53}	<i>RY</i> [*] _{C46}	1.24	2.47		0.80			Ste	p 8		
<i>CR</i> _{C46}	$\pi^{*}_{C46-C53}$	0.77	1.21					E(2) in the g	gas phase	E(2) in decal	in
$\pi_{c46-c53}$	$\sigma^{*}_{ m H69-H70}$		11.24			Donor	Acceptor	IM 6	TS 8	IM 6	TS 8
$\pi^{*}_{C46-C53}$	$\sigma^{*}_{ m H69-H70}$		17.26			π _{C52-C59}	$\pi^*_{ ext{C56-C59}}$	4.61	3.73	4.59	3.72
		Step 7	1			$\pi_{C53-C56}$	$\pi^{*}_{C56-C59}$	4.91	2.36	4.88	2.36
		E(2) in t	he gas phase	E(2) in de	ecalin	$\pi_{c56-c57}$	$\pi^{*}_{C56-C59}$	3.29	1.62	3.30	1.63
Donor	Acceptor	IM 5	TS 7	IM 5	TS 7	CR _{C56}	$\pi^{*}_{C56-C59}$	1.58	1.16	1.58	1.15
$\pi_{\rm C54-C57}$	$\pi^{*}_{C57-C58}$	3.89	1.33	1.27	1.47	CR _{C59}	RY^*_{C56}	2.52	1.60	2.52	1.57
	$\sigma^*_{C57-H73}$		0.64		1.65		$\pi^{*}_{C56-C59}$	1.91	1.65	1.91	1.66
$\pi_{_{\mathrm{C55-C58}}}$	$\pi^{*}_{C57-C58}$	4.02	0.99	4.02	1.84	$\pi_{_{\mathrm{C56-C59}}}$	$\sigma^*_{\rm H71-H72}$		9.13		
	$\sigma^*_{_{\mathrm{C58-H74}}}$		0.53			$\sigma_{_{ m H71-H72}}$	$\pi^{*}_{C56-C59}$		0.29		0.28
$\pi_{_{C56-C57}}$	$\pi^{*}_{C57-C58}$	3.59	1.16	3.58	1.08	$\pi^{*}_{C56-C59}$	$\sigma^{*}_{}_{}_{ m H71-H72}$		19.82		20.73
	$\sigma^*_{ m C57-H73}$		0.69		1.30						
	$\sigma^*_{C58-H74}$		0.68								
$\pi_{_{ m C57-C58}}$	$\sigma^*_{C57-H73}$		1.04		1.19						
$\sigma_{_{ m C58-H73}}$	$\sigma^*_{C58-H74}$		3.35		1.34						
$\sigma_{_{C58-H74}}$	σ^*		2.89								

Table	S5. Natı	ural Ele	ctron (Configur	ration of	the reac	tant, int	ermedia	tes and	TSs in g	as phase a	and de	calin					
GAS	1	*	*]	DECALI	N	2.04			GA	<u>s</u>			DECALIN					
]	R/ IM		ГS	R /]	IM	TS				R/ IM		TS	R/ IM		TS		
		[&re]2s(0.86 C58	core]2s(0	.95 [co	re]2s(0.86)) [core]2s(0.95)			[core]2s	(0.87	[core] 2s(0.95)	[core]	2s(0.87)	[core]2S	5(0.88)	
	C5))))	2p(3.15)	2p(3.	37)		C4)		2p(3.26)	2p(3.1	1)	2p(3.28	5)	
G(1	0 2	2p(3.15)	2	2p(3.35)	3p(0.01)	3p(0.	01)		9	2p(3.11)		3p(0.02)	3p(0.0	1)	3p(0.01))	
Step 1		3p(0.01)		3p(0.02)					Stej	p 2	3p (0.01)						
TAP	- 1 F S4 (SELECT	FED DA	DTIAL	СПАРС	FS FDAN	A THE N	DA ANA			DEACTAR	NTC A	ND TSS IN TH	FCASI	DUASE A		TAT IN	
RFS	PECTIA	SELEU /FI V			CHANG	ES FROM		IAANA			NEAC I AI	115 A		IE GAS I	HASE A	IND DEC	ALIN,	
ILD S		LLI.		STEP	P 1								STEP 2					
		(Gas			Dec	alin					Gas			De	Decalin		
	C50	C54	H65	H66	C50	C54	H65	H66		C49	C55	H6	5 H66	C49	C55	H65	H66	
R	-0.027	0.011	0.000	-0.000	-0.029	0.010	0.000	-0.000	R	0.009	-0.066	0.0	-0.000	0.008	-0.066	0.0003	0.00	
TS 1	-0.312	-0.096	0.330	-0.007	-0.331	0.110	0.326	-0.329	TS 2	-0.236	-0.248	0.2	0.215	-0.179	-0.245	0.436	0.261	
				Step	3								Step 4					
		(Gas			Dec	alin				(Gas			Deca	lin		
	C49	C55	H67	H68	C49	C55	H67	H68		C50	C54	He	7 H68	C50	C54	H67	H68	
IM 1	0.032	-0.049	0.000	0.000	0.034	-0.049	0.000	0.000	IM 2	-0.031	0.004	0.0	0.000 0.000	-0.032	0.004	-0.000	0.000	
TS 3	-0.165	0.007	0.279	0.284	-0.260	0.114	0.193	-0.196	TS 4	-0.305	0.164	0.2	36 0.254	-0.318	0.172	0.275	-0.414	
			7	Step	5	D	1.				,	-	Step 6		D	1.		
	C4((Jas	1170	CAC	Dec		1170		C52	C 45	jas	7 11(0	C52	Deca	lin 11(7	11/0	
IM 2	0.020	0.004	H69	H/0	0.021	0.002	H69	H/0	IM4	0.022	0.006	Ht	H68	0.022	0.008	H6/	H68	
TC 5	-0.029	0.004	0.000	0.000	-0.031	0.002	0.000	-0.000	TR (-0.025	-0.000	-0.0	00 0.000	-0.022	-0.008	0.000	0.000	
155	0.019	-0.134	0.055	-0.042	0.082	-0.301	0.297	-0.378	150	0.155	-0.293	0.2	-0.195	0.188	-0.317	0.263	-0.410	
		(200	Step	1	Dee	alin					200	Step 8		Darr	lin		
	C57	C58	Jas H73	H74	C57	C58	41111 H73	H74		C56	C59	Jas Ц7	1 H72	C56	C59	H71	H72	
IM 5	-0.087	0.168	0.000	0.000	-0.089	0.167	0.000	0.000	IM 6	-0.104	0.208	0.0	-0.001	-0 104	0.206	0.000	0.000	
TS 7	-0.311	0.100	0.326	-0 204	-0.349	0.107	0.374	-0.753	TS 8	-0.231	0.208	0.0	72. 0.098	-0.234	0.200	-0.176	0.000	
157	0.511	0.222	0.520	0.201	0.517	0.170	0.57 1	0.755	150	0.231	0.270	0.1		0.251	0.270	0.170	0.070	

	C5 4	[core]2s(0.87) 2p(3.11) 3p(0.01)	[core]2s(0.88) 2p(3.19) 3p(0.02)	[core]2s(0.87) 2p(3.11) 3p(0.01)	[core] 2s(0.88) 2p(3.00) 3p(0.01)		C5 5	[core]2s(0.87) 2p(3.18) 3p (0.01)	[core]2s(0.96) 2p(3.27) 3p(0.02)	[core]2s(0.87) 2p(3.18) 3p(0.01)	[core]2S(0.95) 2p(3.27)3p (0.01) 3d(0.01)
	H6 5	1s(1.00)	1S(0.67)	1s(1.00)	1S(0.67)2S(1.01)		H6 5	1s(1.00)	1s(0.80)	1s(1.00)	1S(0.56)
	H6 6	1s(1.00)	1S(1.01)	1s(1.00)	1S(1.33)		H6 6	1s(1.00)	1s(0.78)	1s(1.00)	1S(0.73) 2S(0.01)
Step 3	C4 9	[core]2s(0.87) 2p(3.08) 3p(0.01)	[core]2s(0.95) 2p(3.19) 3p(0.02)	[core]2s(0.87) 2p(3.08) 3p(0.01)	[core]2s(0.96) 2p(3.28) 3p(0.02)	Step 4	C5 0	[core]2s(0.86) 2p(3.15) 3p(0.01)	[core]2s(0.96) 2p(3.33) 3p(0.02)	[core]2s(0.86) 2p(3.15) 3p(0.01)	[core]2s(0.96) 2p(3.34) 3p(0.01)
	C5 5	[core]2s(0.87) 2p(3.17) 3p(0.01)	[core]2s(0.90) 2p(3.07) 3p(0.01)	[core]2s(0.87) 2p(3.17) 3p(0.01)	[core]2s(0.89) 2p(2.98) 3p(0.01)		C5 4	[core]2s(0.87)) 2p(3.11) 3p(0.01)	[core]2s(0.88) 2p(2.94) 3p(0.01)	[core]2s(0.87) 2p(3.11) 3p(0.01)	[core]2s(0.87) 2p(3.18) 3p(0.01)
	H6 7	1s(1.00)	1s(0.72)	1s(1.00)	1s(0.81)		H6 7	1s(1.00)	1s(0.76)2s(0.0 1)	1s(1.00)	1s(0.72)2s(0.01)
	H6 8	1s(1.00)	1s(0.71)	1s(1.00)	1s(1.14)		H6 8	1s(1.00)	1s(1.25)	1s(1.00)	1s(1.41)
Step 5	C5 3	[core]2s(0.86) 2p(3.11) 3p(0.01)	[core]2s(0.95) 2p(3.17) 3p(0.01)	[core]2s(0.87) 2p(3.15) 3p(0.01)	[core]2s(0.86) 2p(3.04) 3p(0.01)	Step 6	C4 5	[core]2s(0.87) 2p(3.12) 3p(0.01)	[core]2s(0.95) 2p(3.32) 3p(0.02)	[core]2s(0.87) 2p(3.13) 3p(0.01)	[core]2s(0.96) 2p(3.33) 3p(0.02)
	C4 6	[core]2s(0.87) 2p(3.15) 3p(0.01)	[core]2s(0.95)) 2p(3.02) 3p(0.01)	[core]2s(0.87) 2p(3.12) 3p(0.01)	[core]2s(0.96) 2p(3.33) 3p(0.01)		C5 2	[core]2s(0.87) 2p(3.14) 3p(0.01)	[core]2s(0.89) 2p(2.942) 3p(0.01)	[core]2s(0.87) 2p(3.14) 3p(0.01)	[core]2s(0.88) 2p(2.91) 3p(0.01)
	H6 9	1s(1.00)	1s(0.95)	1s(1.00)	1s(0.70)2s(0.01)		H6 7	1s(1.00)	1s(0.79)	1s(1.00)	1s(0.73)2s(0.01)
	H7 0	1s(1.00)	1s(1.04)	1s(1.00)	1s(1.38)		H6 8	1s(1.00)	1s(1.19)	1s(1.00)	1s(1.42)
S40 7	C5 7	[core]2s(0.84) 2p(3.23) 3p(0.01)	[core]2s(0.95) 2p(3.35) 3p(0.01)	[core]2s(0.84) 2p(3.23) 3p(0.01)	[core]2s(0.95) 2p(3.38) 3p(0.01)	Step 8	C5 6	[core]2s(0.84) 2p(3.25) 3p(0.01)	[core]2s(0.94) 2p(3.27) 3p(0.02)	[core]2s(0.84) 2p(3.25) 3p(0.01)	[core]2s(0.94) 2p(3.28) 3p(0.02)
Step 7	C5 8	[core]2s(0.81) 2p(3.23)	[core]2s(0.89) 2p(2.86)	[core]2s(0.81) 2p(3.01) 3p(0.01)	[core]2s(0.83) 2p(2.65) 3p(0.02)		C5 9	[core]2s(0.81) 2p(2.96)	[core]2s(0.81) 2p(2.87) 3p(0.01)	[core]2s(0.81) 2p(2.97) 3p(0.01)	[core]2s(0.81) 2p(2.87) 3p(0.01)

	3p(0.01)	3p(0.02) 3d(0.01)		3d(0.01)		3p(0.01) 3d(0.01)	3d(0.01)	3d(0.01)	3d(0.01)
H6 9	1s(1.00)	1s(0.95)	1s(1.00)	1s(0.62)2s(0.01)	H7 1	1s(1.00)	1s(1.17)	1s(1.00)	1s(1.71)
H7 0	1s(1.00)	1s(1.04)	1s(1.00)	1s(1.75)	H7 2	1s(1.00)	1s(0.90)	1s(1.00)	1s(0.90)

TS 5

Figure S1. Optimized structures of the TSs in the hydrogen storage pathways in Scheme 1 for NEC doped fullerene in the gas phase.

Figure S2. Mulliken analysis of the reactant, product and transition states in the gas phase (acceptor in red and donor in green color).

Figure S3. Electron density from total SCF density mapped with ESP of the reactant, product and transition states in the gas phase.