Supporting Information

Poly(2-aminothiazole) as a unique precursor for nitrogen and sulfur co-doped porous carbon: Immobilization of very small gold nanoparticles and its catalytic application

Yasamin Bide, Mohammad Reza Nabid* and Fateme Dastar

FT-IR analysis

FT-IR spectra of 2AT, P2AT, and (N, S)-PCM were given in Fig. S1, respectively. The bands at 3415 and 3292 cm⁻¹ in the spectrum of 2AT are related to the asymmetrical and symmetrical N–H stretching modes of the $-NH_2$ group, respectively. The single broad band of N–H stretching at 3397 cm⁻¹ in the spectrum of P2AT showed the formation of -N(H)–linkages, due to the reaction of $-NH_2$ group during polymerization. The peak at 1626 cm⁻¹ in the FT-IR spectrum of 2AT and 1621 cm⁻¹ in the spectrum of P2AT are ascribed to the C=N stretching bands. The absorption bands at 695 and 618 cm⁻¹ in the spectra of 2AT and P2AT, respectively, are related to the C–S stretching vibration.

Fig. S1 FT-IR spectra of 2AT (A), P2AT (B) and (N, S)-PCM (C).

DTG analysis

Fig. S2 DTA curve of P2AT.

BET analysis

Fig. S3 Nitrogen adsorption isotherms of P2AT (A), (N, S)-PCM (B), and AuNPs@(N, S)-PCM (C). The inset shows the pore-size distribution obtained from adsorption branch using the BJH method.

UV-Vis spectra

Fig. S4 UV-vis absorption spectra for the catalytic reduction of 2-nitroaniline by NaBH₄ in the presence of AuNPs@(N, S)-PCM as the catalyst.

Fig. S5 UV-vis absorption spectra for the catalytic reduction of 4-nitrophenol by NaBH₄ in the presence of AuNPs@(N, S)-PCM as the catalyst.

Fig. S6 UV-vis absorption spectra for the catalytic reduction of 4-nitroaniline by NaBH₄ in the presence of AuNPs@(N, S)-PCM as the catalyst.

Fig. S7 UV-vis absorption spectra for the catalytic reduction of 4-methoxy-2-nitroaniline by NaBH₄ in the presence of AuNPs@(N, S)-PCM as the catalyst.

Fig. S8 UV-vis absorption spectra for the catalytic reduction of 3-nitrophenol by $NaBH_4$ in the presence of AuNPs@(N, S)-PCM as the catalyst.

Table S1	Comparison	of various	AuNPs	catalysts	of 2NA	reduction	with	NaBH ₄	as r	educing
agent.										

Entry	Details of catalysts Ref	mol% Au (mol Au/mol 2NA×100)	NaBH ₄ (mmol)	Time (min)
1	AuNPs on Graphene oxide ¹	2.2	0.36	1
2	AuNPs on Silica nanorattles ²	3.17	0.2	21
3	AuNPs on amino-functionalized silica nanoparticles with center-radially hierarchical mesopores ³	0.67	0.06	6
4	AuNPs encapsulated within hollow silica nanospheres ⁴	0.16	0.3	22
5	Au@SiO ₂ yolk-shell nanoreactors ⁵	21.8	1.2	20
6	This work	0.63	0.02	12

Recyclability

Fig. S9 Effect of recycling on the catalytic activity of AuNPs@(N, S)-PCM after 4 min.

Refrences

1. N. T. Khoa, S. W. Kim, D.-H. Yoo, E. J. Kim and S. H. Hahn, *Appl. Catal.*, *A*, 2014, **469**, 159-164.

- 2. L. Tan, D. Chen, H. Liu and F. Tang, Adv. Mater., 2010, 22, 4885-4889.
- 3. X. Du and J. He, Nanoscale, 2012, 4, 852-859.
- 4. X. Du, L. Yao and J. He, Chem. Eur. J., 2012, 18, 7878-7885.
- 5. J. Lee, J. C. Park, J. U. Bang and H. Song, Chem. Mater., 2008, 20, 5839-5844.