Supporting Information

A Cu(II) Complex-based Fluorescence Chemosensor for Cyanide in Aqueous Media

Dan Wang, [†] Jian-Quan Zheng, [‡] Xi Yan, ^{†,*} Xiang-Jun Zheng^{†,*} and Lin-Pei Jin[†]

† Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry,
Beijing Normal University, Beijing, 100875, People's Republic of China.

‡ Beijing Key Laboratory for Bioactive Substances and Functional Foods,Beijing Union University, Beijing, 100191, People's Republic of China.

Corresponding author:

Tel.: +86-10-58805522; fax: +86-10-58802075. E-mail address: <u>xjzheng@bnu.edu.cn</u> (X. -J. Zheng)

Fig. S1 ¹³C NMR spectra of H_2L in DMSO- d_6 .

Fig. S2 Molecular structures with an atom labeling schemes for the ligand H_2L .

Fig. S3 (a) Estimation of association constant by Benesi-Hildebrand (B-H) plot for 1:1 stoichiometry for the complexation between H_2L and Cu^{2+} in DMSO/ H_2O (1:1, v/v). (b) Normalized response of fluorescence signal at 432 nm to changing Cu^{2+} concentrations.

Fig. S4 The intermolecular hydrogen bond in 1.

Fig. S5 PXRD patterns of [Cu(HL¹)(Ac)]: (a) simulated from 1 single-crystal X-ray diffraction data, (b) PXRD patterns of **1**' as-synthesized.

Fig. S6 ESI-MS spectrum of H_2L (50 μ M) after treatment with an equal amount of Cu^{2+} .

Fig. S7 (a) UV-vis spectra of H₂L (10 μ M) in DMSO/H₂O (1:1, v/v) with 1.0 equiv. of CN⁻ ions. (b) Fluorescence spectra of H₂L (10 μ M) in DMSO/H₂O (1:1, v/v) with 1.0 equiv. of CN⁻ ions.

 λ_{ex} =358 nm.

Fig. S8 ESI-MS spectrum of 1 (10 μ M) after treatment with 4.0 equiv. CN⁻.

Fig. S9 Fluorescence spectra of H_2L (λ_{ex} =358 nm), 1 upon the addition of 4 equiv. CN⁻ (λ_{ex} =358 nm) and H_2L^{1} •HCl (λ_{ex} =408 nm) in DMSO/H₂O (1:1, v/v).

Scheme S1 Reaction scheme for the synthesis of the ligand H_2L .

Table S1 Crystal data and structure refinement parameters of H_2L .

Compound	H ₂ L
Formula	$C_{22}H_{21}N_3O_3S$
Fw	407.49
Crystal system	Orthorhombic
Space group	Pbca
a (Å)	10.0302(11)
b(Å)	16.5489(19)
<i>c</i> (Å)	23.691(3)
α (°)	90
β (°)	90
γ (°)	90
$V(Å^3)$	3932.4(8)
Ζ	8
calculated density	1.377
(g/cm^3)	
F(000)	1712
Reflections	25333 / 4522
collected/unique	[R(int) = 0.0934]
Goodness-of-fit on F ²	1.353
Final R indices	$R_1 = 0.1262$,
$[I \ge 2\sigma(I)]$	$wR_2 = 0.3705$
R indices (all data)	$R_1 = 0.2072,$
	$wR_2 = 0.4269$

 $\mathbf{R}_{1} = \Sigma(|\mathbf{F}_{o}| - |\mathbf{F}_{c}|)/|\mathbf{F}_{o}|; \ w\mathbf{R}_{2} = \{\Sigma[(w|\mathbf{F}_{o}^{2}| - |\mathbf{F}_{c}^{2}|)^{2}/\Sigma w(\mathbf{F}_{o}^{2})^{2}]\}^{1/2}.$

H ₂ L					
C(1)-C(2)	1.385(8)	C(10)-C(11)	1.353(11)		
C(1)-C(6)	1.385(7)	C(11)-C(12)	1.431(11)		
C(2)-O(2)	1.365(6)	C(12)-C(13)	1.417(10)		
C(2)-C(3)	1.398(7)	C(13)-C(14)	1.512(9)		
C(3)-C(4)	1.355(7)	C(14)-N(3)	1.274(8)		
C(4)-C(5)	1.385(7)	C(14)-N(2)	1.323(7)		
C(5)-C(6)	1.412(7)	C(15)-C(20)	1.357(10)		
C(5)-C(7)	1.513(7)	C(15)-C(16)	1.375(9)		
C(6)-O(1)	1.360(6)	C(15)-N(3)	1.463(9)		
C(7)-N(2)	1.413(7)	C(16)-C(17)	1.368(12)		
C(7)-N(1)	1.500(8)	C(17)-C(18)	1.458(12)		
C(8)-C(9)	1.348(10)	C(18)-C(19)	1.358(11)		
C(8)-C(13)	1.373(9)	C(19)-C(20)	1.317(10)		
C(8)-N(1)	1.406(8)	C(20)-N(2)	1.463(8)		
C(9)-C(10)	1.360(11)				
C(2)-C(1)-C(6)	119.5(5)	C(8)-C(13)-C(12)	120.3(6)		
O(2)-C(2)-C(1)	122.2(5)	C(8)-C(13)-C(14)	119.6(6)		
O(2)-C(2)-C(3)	118.0(5)	C(12)-C(13)-C(14)	120.0(6)		
C(1)-C(2)-C(3)	119.8(5)	N(3)-C(14)-N(2)	118.9(7)		
C(4)-C(3)-C(2)	120.0(5)	N(3)-C(14)-C(13)	127.4(6)		
C(3)-C(4)-C(5)	122.1(5)	N(2)-C(14)-C(13)	113.6(6)		
C(4)-C(5)-C(6)	117.7(5)	C(20)-C(15)-C(16)	120.3(7)		
C(4)-C(5)-C(7)	124.9(4)	C(20)-C(15)-N(3)	113.6(6)		
C(6)-C(5)-C(7)	117.5(5)	C(16)-C(15)-N(3)	126.1(7)		
O(1)-C(6)-C(1)	123.3(4)	C(17)-C(16)-C(15)	117.9(7)		
O(1)-C(6)-C(5)	115.8(4)	C(16)-C(17)-C(18)	119.4(6)		
C(1)-C(6)-C(5)	120.8(5)	C(19)-C(18)-C(17)	119.6(7)		
N(2)-C(7)-N(1)	104.1(5)	C(20)-C(19)-C(18)	118.1(7)		

Table S2 Selected Bond Distances (Å) and Angles (deg) for H_2L and 1.

N(2)-C(7)-C(5)	113.1(5)	C(19)-C(20)-C(15)	124.6(6)		
N(1)-C(7)-C(5)	112.7(5)	C(19)-C(20)-N(2)	133.9(7)		
C(9)-C(8)-C(13)	120.7(6)	C(15)-C(20)-N(2)	101.5(6)		
C(9)-C(8)-N(1)	121.6(7)	C(8)-N(1)-C(7)	119.7(5)		
C(13)-C(8)-N(1)	117.3(6)	C(14)-N(2)-C(7)	130.4(6)		
C(8)-C(9)-C(10)	119.5(7)	C(14)-N(2)-C(20)	106.0(5)		
C(11)-C(10)-C(9)	124.1(8)	C(7)-N(2)-C(20)	123.3(6)		
C(10)-C(11)-C(12)	117.4(7)	C(14)-N(3)-C(15)	99.9(6)		
C(13)-C(12)-C(11)	118.0(7)				
1					
		1			
Cu(1)-N(1)	1.953(2)	1 Cu(1)-O(3)	1.8839(19)		
Cu(1)-N(1) Cu(1)-N(3)	1.953(2) 1.9574(19)	1 Cu(1)-O(3) Cu(1)-O(4)	1.8839(19) 1.9851(19)		
Cu(1)-N(1) Cu(1)-N(3) O(3)-Cu(1)-N(1)	1.953(2) 1.9574(19) 162.18(9)	1 Cu(1)-O(3) Cu(1)-O(4) C(7)-N(1)-Cu(1)	1.8839(19) 1.9851(19) 124.68(16)		
Cu(1)-N(1) Cu(1)-N(3) O(3)-Cu(1)-N(1) O(3)-Cu(1)-N(3)	1.953(2) 1.9574(19) 162.18(9) 94.48(8)	1 Cu(1)-O(3) Cu(1)-O(4) C(7)-N(1)-Cu(1) C(6)-N(1)-Cu(1)	1.8839(19) 1.9851(19) 124.68(16) 129.00(16)		
Cu(1)-N(1) Cu(1)-N(3) O(3)-Cu(1)-N(1) O(3)-Cu(1)-N(3) N(1)-Cu(1)-N(3)	1.953(2) 1.9574(19) 162.18(9) 94.48(8) 91.03(8)	1 Cu(1)-O(3) Cu(1)-O(4) C(7)-N(1)-Cu(1) C(6)-N(1)-Cu(1) C(14)-N(3)-Cu(1)	1.8839(19) 1.9851(19) 124.68(16) 129.00(16) 120.41(15)		
Cu(1)-N(1) Cu(1)-N(3) O(3)-Cu(1)-N(1) O(3)-Cu(1)-N(3) N(1)-Cu(1)-N(3) O(3)-Cu(1)-O(4)	1.953(2) 1.9574(19) 162.18(9) 94.48(8) 91.03(8) 84.31(8)	1 Cu(1)-O(3) Cu(1)-O(4) C(7)-N(1)-Cu(1) C(6)-N(1)-Cu(1) C(14)-N(3)-Cu(1) C(13)-N(3)-Cu(1)	1.8839(19) 1.9851(19) 124.68(16) 129.00(16) 120.41(15) 122.57(15)		
Cu(1)-N(1) Cu(1)-N(3) O(3)-Cu(1)-N(1) O(3)-Cu(1)-N(3) N(1)-Cu(1)-N(3) O(3)-Cu(1)-O(4) N(1)-Cu(1)-O(4)	1.953(2) 1.9574(19) 162.18(9) 94.48(8) 91.03(8) 84.31(8) 94.11(8)	1 Cu(1)-O(3) Cu(1)-O(4) C(7)-N(1)-Cu(1) C(6)-N(1)-Cu(1) C(14)-N(3)-Cu(1) C(13)-N(3)-Cu(1) C(20)-O(3)-Cu(1)	1.8839(19) 1.9851(19) 124.68(16) 129.00(16) 120.41(15) 122.57(15) 126.28(15)		
Cu(1)-N(1) Cu(1)-N(3) O(3)-Cu(1)-N(1) O(3)-Cu(1)-N(3) N(1)-Cu(1)-N(3) O(3)-Cu(1)-O(4) N(1)-Cu(1)-O(4) N(3)-Cu(1)-O(4)	1.953(2) 1.9574(19) 162.18(9) 94.48(8) 91.03(8) 84.31(8) 94.11(8) 166.64(8)	1 Cu(1)-O(3) Cu(1)-O(4) C(7)-N(1)-Cu(1) C(6)-N(1)-Cu(1) C(14)-N(3)-Cu(1) C(13)-N(3)-Cu(1) C(20)-O(3)-Cu(1) C(2A)-O(4)-Cu(1)	1.8839(19) 1.9851(19) 124.68(16) 129.00(16) 120.41(15) 122.57(15) 126.28(15) 114.97(15)		