Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

Application of flexible bis-pyrazine-bis-amide ligands to

construct various polyoxometalate-based metal-organic

complexes

Xiu-Li Wang* Dan-Na Liu, Hong-Yan Lin, Guo-Cheng Liu, Na Han, Jian Luan and Zhi-Han Chang

Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000, P. R. China

Table S1 Selected bond distances (Å) and angles (°) for compounds 1–5.

Compound 1					
Cu(1)-O(2)	1.923(5) O(3)-Cu(1)-N(1)		82.7(2)		
Cu(1)-O(3)	1.931(5)	O(1W)-Cu(1)-N(1)	165.7(3)		
Cu(1)-O(1W)	1.939(7)	O(2)-Cu(1)-O(1)	88.4(2)		
Cu(1)-N(1)	1.977(6)	O(3)-Cu(1)-O(1)	95.7(2)		
Cu(1)-O(1)	2.404(6)	O(1W)-Cu(1)-O(1)	100.0(3)		
Cu(2)-N(3)	1.961(6)	N(1)-Cu(1)-O(1)	91.5(2)		
Cu(2)-N(3)#1	1.961(6)	N(3)-Cu(2)-N(3)#1	179.998(1)		
Cu(2)-O(4)#1	1.970(5)	N(3)-Cu(2)-O(4)#1	97.40(2)		
Cu(2)-O(4)	1.970(5)	N(3)#1-Cu(2)-O(4)#1	82.60(2)		
O(2)-Cu(1)-O(3)	175.5(2)	N(3)-Cu(2)-O(4)	82.60(2)		
O(2)-Cu(1)-O(1W)	93.70(3)	N(3)#1-Cu(2)-O(4)	97.40(2)		
O(3)-Cu(1)-O(1W)	87.60(3)	O(4)#1-Cu(2)-O(4)	179.999(2)		
O(2)-Cu(1)-N(1)	95.2(2)				
Symmetry code for 1: #1 –x–1, –	-y+2, -z+2				
Compound 2					
Cu(1)-O(1)	1.962(2)	O(3)#1-Cu(1)-N(1)	93.06(10)		
Cu(1)-O(3)#1	1.963(2)	O(1)-Cu(1)-N(5)#1	101.66(10)		
Cu(1)-N(1)	1.969(2)	O(3)#1-Cu(1)-N(5)#1	82.63(10)		
Cu(1)-N(5)#1	1.971(3)	N(1)-Cu(1)-N(5)#1	175.21(10)		
Cu(1)-O(2)	2.322(2)	O(1)-Cu(1)-O(2)	85.22(9)		
O(3)-Cu(1)#3	1.963(2)	O(3)#1-Cu(1)-O(2)	95.26(9)		
N(5)-Cu(1)#3	1.971(3)	N(1)-Cu(1)-O(2)	87.41(9)		
O(1)-Cu(1)-O(3)#1	175.64(9)	N(5)#1-Cu(1)-O(2)	95.04(9)		
O(1)-Cu(1)-N(1)	82.63(10)				
Symmetry code for 2 : #1 –x–1/2, y+1/2, –z+1/2; #3 –x–1/, y–1/2, –z+1/2					
Compound 3					
Cu(1)-O(1)#2	1.947(7)	O(1)#2-Cu(1)-O(1W)#2	94.2(3)		

* Corresponding author. Tel.: +86-416-3400158

E-mail address: <u>wangxiuli@bhu.edu.cn</u> (X.-L. Wang)

Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

This journal is @ The Roy	al Society of CI	icillisti y	
Cu(1)-O(1)	1.948(7)	O(1)-Cu(1)-O(1W)#2	85.8(3)
Cu(1)-N(3)#2	1.957(7)	N(3)#2-Cu(1)-O(1W)#2	81.1(3)
Cu(1)-N(3)	1.957(7)	N(3)-Cu(1)-O(1W)#2	98.9(3)
Cu(1)-O(1W)#2	2.405(11)	O(1)#2-Cu(1)-O(1W)	85.8(3)
Cu(1)-O(1W)	2.405(11)	O(1)-Cu(1)-O(1W)	94.2(3)
N(1)-Cu(2)	2.002(13)	N(3)#2-Cu(1)-O(1W)	98.9(3)
Cu(2)-O(2)	1.950(9)	N(3)-Cu(1)-O(1W)	81.1(3)
Cu(2)-O(2)#3	1.950(9)	O(1W)#2-Cu(1)-O(1W)	180.0
Cu(2)-N(1)#3	2.002(13)	O(2)-Cu(2)-O(2)#3	179.999(1)
O(1)#2-Cu(1)-O(1)	180.0(4)	O(2)-Cu(2)-N(1)#3	96.8(4)
O(1)#2-Cu(1)-N(3)#2	97.0(3)	O(2)#3-Cu(2)-N(1)#3	83.2(4)
O(1)-Cu(1)-N(3)#2	83.0(3)	O(2)-Cu(2)-N(1)	83.2(4)
O(1)#2-Cu(1)-N(3)	83.0(3)	O(2)#3-Cu(2)-N(1)	96.8(4)
O(1)-Cu(1)-N(3)	97.0(3)	N(1)#3-Cu(2)-N(1)	179.999(1)
N(3)#2-Cu(1)-N(3)	180.000(1)		
Symmetry code for 3 : $\#2 - x - 1$, -y+1, -z -1 ; #3		
Compound 4			
Cu(1)-O(1)#2	1.969(11)	O(2)-Cu(2)-N(5)	82.8(4)
Cu(1)-O(1)	1.969(11)	O(2)#3-Cu(2)-N(5)	97.2(4)
Cu(1)-N(1)#2	2.011(16)	O(2)-Cu(2)-N(5)#3	97.2(4)
Cu(1)-N(1)	2.011(16)	O(2)#3-Cu(2)-N(5)#3	82.8(4)
Cu(2)-O(2)	1.950(8)	N(5)-Cu(2)-N(5)#3	179.998(1)
Cu(2)-O(2)#3	1.950(8)	O(2)#3-Cu(2)-N(5)#3	82.8(4)
Cu(2)-N(5)	1.973(9)	N(5)-Cu(2)-N(5)#3	179.998(1)
Cu(2)-N(5)#3	1.973(9)	N(5)-Cu(2)-O(1W)	100.72(3)
Cu(2)- O(1W)	2.446(10)	N(5)#3-Cu(2)- O(1W)	79.28(3)
Cu(2)- O(1W)#3	2.446(10)	N(5)-Cu(2)-O(1W)#3	79.28(3)
O(1)#2-Cu(1)-O(1)	179.998(1)	N(5)#3-Cu(2)-O(1W)#3	100.72(3)
O(1)#2-Cu(1)-N(1)#2	82.7(5)	O(2) -Cu(2)- O(1W)#3	86.73(3)
O(1)-Cu(1)-N(1)#2	97.3(5)	O(2)#3-Cu(2)- O(1W)	86.73(3)
O(1)#2-Cu(1)-N(1)	97.3(5)	O(1W)-Cu(2)- O(1W)#3	180.00(3)
O(1)-Cu(1)-N(1)	82.7(5)	O(2)-Cu(2)- O(1W)	93.27(3)
N(1)#2-Cu(1)-N(1)	180.0(5)	O(2)#3-Cu(2)- O(1W) #3	93.27(3)
O(2)-Cu(2)-O(2)#3	180.0		
Symmetry code for 4: $#2 - x + 1$, -y+1, -z; #3 -x-	+2, -y, -z	
Compound 5			
Cu(2)-O(1)	1.928(7)	N(1)-Cu(1)-N(2)#2	91.6(4)
Cu(1)-N(1)	1.990(10)	N(1)#2-Cu(1)-N(2)#2	88.4(4)
Cu(1)-O(2)#2	1.963(8)	O(2)#2-Cu(1)-N(2)	89.4(3)
Cu(1)-O(2)	1.963(8)	O(2)-Cu(1)-N(2)	90.6(3)
Cu(1)-N(1)#2	1.990(10)	N(1)-Cu(1)-N(2)	88.4(4)
Cu(1)-N(2)#2	2.430(9)	N(1)#2-Cu(1)-N(2)	91.6(4)
Cu(1)-N(2)	2.430(9)	N(2)#2-Cu(1)-N(2)	179.999(1)
Cu(2)-O(1)#3	1.928(7)	N(1)-Cu(1)-N(1)#2	179.999(1)

Supplementary Material (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry

This journar is a The Royar Sourcey of Chemistry					
Cu(2)-N(4)	1.946(9)	O(1)#3-Cu(2)-N(4)	96.6(3)		
Cu(2)-N(4)#3	1.946(9)	O(1)-Cu(2)-N(4)	83.4(3)		
O(2)#2-Cu(1)-O(2)	179.999(1)	O(1)#3-Cu(2)-N(4)#3	83.4(3)		
O(2)#2-Cu(1)-N(1)	97.2(4)	O(1)-Cu(2)-N(4)#3	96.6(3)		
O(2)-Cu(1)-N(1)	82.8(4)	N(4)-Cu(2)-N(4)#3	179.999(2)		
O(2)#2-Cu(1)-N(1)#2	82.8(4)	O(1)#3-Cu(2)-O(1)	179.999(1)		
Symmetry code for 5 #2 -x-1, -y, -z; #3 -x-2, -y-1, -z-1					

Table S2. Selected hydrogen–bonding geometry (Å, °) for compound 3 and 5

	D–H···A	D–H	Н…А	D···A	D–H…A
Compound 3	N(5)-H(5B)···O(22)	0.86	2.23	3.0478	159
Compound 5	C(7)-H(7A…O(10)	0.93	2.45	3.3506	162

Fig. S1 The 2D inorganic layer structure in 2 (The L¹ ligands are omitted for clarity.).

Fig.S2 The coordination environment of the Cu^{II} ion in **4**. All H atoms and lattice water molecules are omitted for clarity. Symmetry codes: #2 -x+1, -y+1, -z; #3 -x+2, -y, -z.

Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

Fig. S3. The IR spectra of compounds 1-5.

Fig. S4. The PXRD patterns of compounds 1-5.

Fig. S5. The TG curves of compounds 1–5.

Fig. S6. Cyclic voltammograms of the 3–CPE (a) and 5–CPE (b) in 0.1 M H₂SO₄ + 0.5 M Na₂SO₄ aqueous solution at different scan rates (from inner to outer: 40, 80, 120, 160, 200, 250, 300, 350, 400, 450, 500 mV·s⁻¹ for 3–CPE and 40, 120, 160, 200, 250, 300, 350, 400, 450, 500 mV·s⁻¹ for 5–CPE). Cyclic voltammograms of 3-CPE (c) and 5-CPE (d) in 0.1 M H₂SO₄ + 0.5 M Na₂SO₄ solution containing 0.0–12.0 mM H₂O₂.

Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

Fig. S7. The dependence of anodic peak (II) and cathodic peak (II') currents for **2**–CPE(a), **3**–CPE(b), **4**–CPE(c), **5**–CPE(d).

Fig. S8. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound 1.

Fig. S9. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound 2.

Fig. S10. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound 4.

Fig. S11. Absorption spectra of the MB solution during the decomposition reaction under UV (a), visible (b) and sunlight (c) irradiation in the presence of the compound **5**.

Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry

Fig. S12. Absorption spectra of the MB solution during the decomposition reaction in the presence of the compounds 1-5 under the dark environment.