This journal is © The Royal Society of Chemistry 2015

Pd_xAg_y alloy nanoparticles supported on reduced graphene oxide as

efficient electrocatalyst for ethanol oxidation in alkaline medium

Cheng Peng*, Yongli Hu, Mingrui Liu, Wenke Yang, Yixiong Zheng

Supplementary Information

Experimental Details

Catalyst preparation: GO was prepared from natural graphite (Sinopharm Chemical

Reagent Co., Ltd) according to the Hummers method. 1 0.5 mg mL⁻¹ GO brown suspension

was obtained by ultrasonication in deionized water. In a typical synthesis of Pd₁Ag₁ catalyst,

1 ml PVP (MW \approx 50 000, Sinopharm Chemical Reagent Co., Ltd) solution (0.01 mol L⁻¹) and

1 ml HCHO (Sinopharm Chemical Reagent Co., Ltd) solution were added into 9.6 ml GO

suspension, subsequently, 9.9 ml Pd(NO₃)₂ (Sinopharm Chemical Reagent Co., Ltd) solution

(1.5×10⁻³ mol L⁻¹) and 0.15 ml AgNO₃ (Sinopharm Chemical Reagent Co., Ltd) solution (0.1

mol L⁻¹) were added into the solution while stirring. The mixture was sealed in a Teflon-lined

stainless steel autoclave and maintained at 105 °C for 6 h, and cooled to ambient temperature.

The resultant product was collected by centrifugation, washed with deionized water and

ethanol to remove the residual impurities, and then dried in a vacuum oven at 50 °C for 24h.

The obtained catalysts were denoted as Pd_xAg_y/RGO where x to y stands for the nominal

atomic ratio of Pd to Ag. For comparison, Pd/RGO catalyst was also prepared with the same

procedure. Furthermore, bare RGO was also synthesized under the same conditions in the

absence of both Pd(NO₃)₂ and AgNO₃.

* Corresponding author: Tel.: +86 592 6162225; Fax: +86 592 6162225

E-mail address: chengpeng@hqu.edu.cn

1

Electrochemical investigation: All the electrochemical measurements were performed on a CHI660D electrochemical workstation at room temperature. The working electrode was prepared by dropping 15 μ L electrocatalyst ink (0.6mg.mL⁻¹) onto glassy carbon electrode with a micropipette and then dried at room temperature. The ink was prepared by ultrasonically mixing 10 μ L electrocatalyst sample in 5 μ L Nafion solution (DuPont, 1 wt% in isopropanol). A Pt foil and Hg/HgO electrode were used as the counter and reference electrodes, respectively. The solutions were deaerated by bubbling ultrapure N₂ for 20 min and protected with a nitrogen atmosphere during the entire experimental procedure.

Materials characterization: Structure and morphology of the Pd_xAg_y/RGO nanocomposite were investigated using X-ray diffraction (XRD, Bruker D8 advance X-ray diffractometer, Cu-Kα radiation, λ = 0.154059 nm at 40 kV and 40 mA, 2 θ range of 30-80°, scan rate 4°·min⁻¹) and transmission electron microscopy (TEM, JEM100CXII). Composition analysis of the sample was obtained on HITACHI S-3500N scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (EDX, OXFORD 7021).

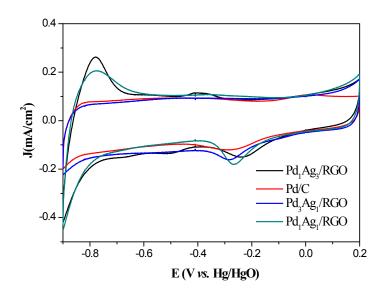


Figure S1 CVs of the Pd_xAg_y/RGO catalysts and commercial Pd/C in 1.0 mol L^{-1} KOH solution.

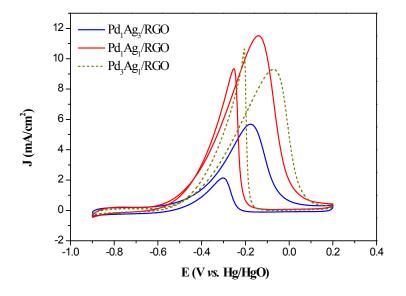


Figure S2 CVs of the Pd_xAg_y/RGO catalysts in 1.0 mol L^{-1} KOH solution containing 1.0 mol L^{-1} ethanol.

Table S1 The calculated lattice parameter and atomic percentage of Ag in the Pd_xAg_y/RGO catalysts.

Samples	$A_{(fcc)}(\mathring{A})$	y_{Ag} (at.%)
Pd_1Ag_3/RGO	4.0442	81.4
Pd_1Ag_1/RGO	3.9857	51.7
Pd ₃ Ag ₁ /RGO	3.9302	22.3

Table S2 Results of the cyclic voltammetric study on the Pd_xAg_y/RGO catalysts.

Samples	Es (V)	Ep(V)	Jp(mA·cm ⁻²)
Pd_1Ag_3/RGO	-0.66	-0.17	5.7
Pd ₁ Ag ₁ /RGO	-0.68	-0.14	11.5
Pd ₃ Ag ₁ /RGO	-0.65	-0.07	9.3

Reference

1 W. S. Hummers and R. E. Offemen, *J. Am. Chem. Soc.*, 1958,**80**,1339.