Synthesis of 2-triazolyl-imidazo[1,2-*a*]pyridine through one-pot three-component reaction using nano copper oxide assisted click-catalyst

Prasanta Ray Bagdi,^a R. Sidick Basha^a and Abu T. Khan*a,b

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India. Tel.: +91 361 2582305; Fax: +91 361 2582349. Email: atk@iitg.ernet.in (A.T. Khan)

^bPresent address: Vice-Chancellor, Aliah University, IIA/27, New Town, Near Eco-Space, Kolkata-700 156, India.

Title page	1
Experimental section and Spectra data of Compounds 4 and 5	2-3
Crystal Data and Structure Refinement for Compound 4f and 8c	4
Copies of ¹ H NMR, ¹³ C NMR and HRMS spectra of all Compounds	5-94

I. General Information and Methods.

¹H and ¹³C NMR spectra were recorded on 400 MHz, 600 MHz and 100 MHz, 150 MHz spectrometer TMS as internal reference; chemical shifts (δ scale) are reported in parts per million (ppm). ¹H NMR Spectra are reported in the order: multiplicity, coupling constant (J value) in hertz (Hz) and no of protons; signals were characterized as s (singlet), d (doublet), t (triplet), q (quatret), m (multiplet) and bs (broad). IR spectra were recorded in KBr or neat. HRMS spectra were recorded using ESI (TOF) mode. The X-ray crystal structures were determined with a diffractometer. Complete crystallographic data of **4f** (CCDC no. 979591) and **8c** (CCDC no. 1019691) for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, Copies of this information may be obtained free of charge from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-1223-336033, e-mail: <u>deposit@ccdc.cam.ac.uk</u> or via: <u>www.ccdc.cam.ac.uk</u>). The copper oxide nanoparticle (particle size <50 nm, CAS Number 1317-38-0) was purchased from Sigma-Aldrich.

Spectra data of Compounds 4 and 5

(1-benzyl-1H-1,2,3-triazol-4-yl)methanol (4a): Yield 92%, white solid, mp 78-79 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.51 (s, 1H), 7.32-7.31 (m, 3H), 7.23-7.21 (m, 2H), 5.44 (s, 2H), 4.69 (s, 2H), 4.23 (br s, 1H); ¹³C NMR (150 MHz, CDCl₃): δ 148.8, 134.6, 129.1, 128.8, 128.2, 122.4, 56.0, 54.2; IR (KBr)v_{max} 3265, 3139, 3086, 3030, 2935, 2882, 1605, 1551, 1456, 1371, 1325, 1222, 1132, 1014 cm⁻¹.

(1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl)methanol (4b): Yield 90%, white solid, mp 91-92 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.43 (s, 1H), 7.12 (br s, 4H), 5.39 (s, 2H), 4.67 (s, 2H), 3.89 (br s, 1H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.3, 138.5, 131.5, 129.6, 128.1, 122.2, 55.7, 53.9, 21.1; IR (KBr)v_{max} 3252, 3140, 3086, 3050, 2945, 2917, 1612, 1553, 1515, 1446, 1375, 1330, 1223, 1134, 1013 cm⁻¹.

(1-(4-bromobenzyl)-1H-1,2,3-triazol-4-yl)methanol (4c): Yield 86%, white solid, mp 224-225 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 8.4 Hz, 2H), 7.44 (s, 1H), 7.12 (d, J = 8.4 Hz, 2H), 5.44 (s, 2H), 4.74 (s, 2H), 2.33 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 133.6, 131.1, 129.1, 121.5, 121.5, 55.0, 52.2; IR (KBr)v_{max} 3259, 3115, 3063, 2957, 2866, 1591, 1543, 1489, 1465, 1407, 1357, 1336, 1230, 1126, 1064, 1012 cm⁻¹.

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methanol (4d): Yield 90%, white solid, mp 68-69 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 1H), 725-7.21 (m, 2H), 7.02-6.97 (m, 2H), 5.42 (s, 2H), 4.82 (br s, 1H), 4.68 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 163.8, 161.3, 148.3, 130.6, 130.5, 129.9, 129.8, 122.1, 115.9, 115.7, 55.6, 53.1; IR (KBr)v_{max} 3291, 3144, 3000, 2949, 2877, 1606, 1546, 1511, 1460, 1420, 1366, 1229, 1157, 1127, 1006 cm⁻¹.

(1-allyl-1H-1,2,3-triazol-4-yl)methanol (4e): Yield 80%, white solid, mp 81-82 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.59 (s, 1H), 6.04-5.95 (m, 1H), 5.35 (d, *J* = 10.4 Hz, 1H), 5.30 (d, *J* = 17.2 Hz, 1H), 4.96 (d, *J* = 6.4 Hz, 2H), 4.75 (s, 2H), 3.48 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 131.2, 122.1, 120.1, 55.8, 52.6; IR (KBr)v_{max} 3266, 3147, 3092, 2933, 2877, 1646, 1553, 1457, 1435, 1420, 1336, 1225, 1141, 1056, 1011 cm⁻¹.

Ethyl 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)acetate (4f): Yield 78%, white solid, mp 68-69 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.65 (s, 1H), 5.09 (s, 2H), 4.64 (s, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 148.3, 123.9, 62.4, 55.8, 50.9, 14.1; IR (KBr)v_{max} 3260, 3133, 3088, 2993, 2936, 2865, 1744, 1556, 1455, 1421, 1400, 1379, 1345, 1237, 1145, 1063, 1021 cm⁻¹.

1-benzyl-1H-1,2,3-triazole-4-carbaldehyde (5a): Yield 82%, white solid, mp 90-91 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.12 (s, 1H), 7.98 (s, 1H), 7.41-7.39 (m, 3H), 7.31-7.29 (m, 2H), 5.58 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 185.2, 148.2, 133.5, 129.6, 129.5, 128.6, 125.3, 54.8; IR (KBr)v_{max} 3127, 3049, 2995, 2925, 2854, 2775, 1694, 1586, 1534, 1495, 1456, 1358, 1237, 1166, 1048 cm⁻¹; HRMS (ESI) Calcd For C₁₀H₁₀N₃O 188.0817 (M + H⁺); Found 188.0819.

1-(4-methylbenzyl)-1H-1,2,3-triazole-4-carbaldehyde (5b): Yield 78%, white solid, mp 77-78 °C, ¹H NMR (600 MHz, CDCl₃): δ 10.11 (s, 1H), 7.96 (s, 1H), 7.20 (s, 4H), 5.54 (s, 2H), 2.36 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 185.3, 148.1,

139.6, 130.5, 130.2, 128.6, 125.2, 54.6, 21.4; IR (KBr)v_{max} 3132, 3041, 2988, 2924, 2854, 2768, 1699, 1610, 1532, 1517, 1463, 1437, 1355, 1243, 1160, 1044 cm⁻¹; HRMS (ESI) Calcd For C₁₁H₁₂N₃O 202.0975 (M + H⁺); Found 202.0975.

1-(4-bromobenzyl)-1H-1,2,3-triazole-4-carbaldehyde (5c): Yield 76%, white solid, mp 107-108 °C, ¹H NMR (600 MHz, CD₂Cl₂): δ 10.8 (s, 1H), 8.06 (s, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 5.55 (s, 2H); ¹³C NMR (150 MHz, CD₂Cl₂): δ 184.7, 148.1, 133.1, 133.0, 132.4, 130.1, 125.7, 125.6, 123.2, 53.2; IR (KBr)v_{max} 3120, 3090, 3039, 2925, 2843, 2767, 1696, 1593, 1532, 1490, 1438, 1356, 1241, 1166, 1046 cm⁻¹; HRMS (ESI) Calcd For C₁₀H₉BrN₃O 265.9924 (M + H⁺); Found 265.9909.

1-(4-fluorobenzyl)-1H-1,2,3-triazole-4-carbaldehyde (5d): Yield 78%, white solid, mp 73-74 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.08 (s, 1H), 7.97 (s, 1H), 7.27-7.29 (m, 2H), 7.03-7.08 (m, 2H), 5.53 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 185.1, 164.4, 161.9, 148.1, 130.5, 130.4, 129.5, 129.4, 125.3, 116.6, 116.4, 53.9; IR (KBr)v_{max} 3139, 3120, 3053, 2956, 2925, 2870, 1699, 1603, 1536, 1512, 1465, 1432, 1345, 1236, 1167, 1049 cm⁻¹; HRMS (ESI) Calcd For C₁₀H₉FN₃O 206.0724 (M + H⁺); Found 206.0722.

1-allyl-1H-1,2,3-triazole-4-carbaldehyde (5e): Yield 72%, white solid, mp 71-72 °C, ¹H NMR (600 MHz, CDCl₃): δ 10.08 (s, 1H), 8.13 (s, 1H), 6.01 (s, 1H), 5.39-5.32 (m, 2H), 5.03 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 185.0, 147.9, 130.2, 125.4, 121.4, 53.1; IR (KBr)v_{max} 3132, 3029, 2924, 2871, 1699, 1615, 1532, 1517, 1462, 1436, 1355, 1243, 1160, 1044 cm⁻¹; MS (ESI) Calcd For C₆H₇N₃ONa 160.0481 (M + Na⁺); Found 160.0816.

Ethyl 2-(4-formyl-1H-1,2,3-triazol-1-yl)acetate (5f): Yield 68%, white solid, mp 65-66 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.15 (s, 1H), 8.28 (s, 1H), 5.24 (s, 2H), 4.29 (br s, 2H), 1.31 (br s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 185.0, 165.6, 148.2, 127.0, 63.1, 51.2, 14.2; IR (KBr)v_{max} 3132, 3062, 2997, 2959, 2849, 2781, 1745, 1703, 1540, 1478, 1416, 1397, 1379, 1249, 1170, 1049 cm⁻¹; HRMS (ESI) Calcd For C₇H₁₀N₃O₃ 184.0717 (M + H⁺); Found 184.0715.

Entry	Identification code	Compound 4f	Compound 8c
01	Empirical formula	C7 H11 N3 O3	C23 H18 Br N5
02	Formula weight	185.19	444.32
03	Temperature	296(2) K	296(2) K
04	Wavelength	0.71073	0.71073
05	Radiation type	Mo K\a	Mo K\a
06	Radiation source	Fine-focus sealed tube	Fine-focus sealed tube
07	Crystal system	monoclinic	orthorhombic
08	Space group	P 21/n	P b c a
09	Cell length	a 7.9591(4) b 4.8417(3) c 23.7648(14)	a 10.5296(11) b 17.3251(18) c 22.405(2)
10	Cell Angle	α 90.0 β 94.296(5) δ 90.0	α 90.0 β 90.00 δ 90.0
11	Cell Volume	913.21(9)	4087.3(7)
12	Density	1.347	1.444
13	Completeness to theta	25.25° / 100%	26.61° / 98.4%
14	Absorption correction	multi-scan	multi-scan
15	Refinement method	Full-matrix least-squares on F2	Full-matrix least-squares on F2
16	Index ranges	-10<=h<=10, -6<=k<=3, - 28<=l<=29	-11<=h<=13, -21<=k<=21, - 26<=l<=27
17	Reflection number	1648	4219
18	Theta range	3.44 - 25.25	1.82-26.61
19	Cell formula units Z	4	8
20	CCDC no	979591	1019691

Table 6 Crystal Data and Structure Refinement for Compound 4f and 8c

¹³C NMR spectra of 4a

¹H NMR spectra of **4b**

¹H NMR spectra of **4e**

¹³C NMR spectra of **5c**

$^{13}\mathrm{C}$ NMR spectra of $\mathbf{5d}$

HRMS spectra of 5d

¹³C NMR spectra of **5e**

HRMS spectra of 5f

35 | P a g e

HRMS spectra of 8b

 $^{13}\mathrm{C}$ NMR spectra of 8c

¹H NMR spectra of 8d

HRMS spectra of 8d

HRMS spectra of 8e

HRMS spectra of 8f

HRMS spectra of 8h

HRMS spectra of 8i

HRMS spectra of 8j

¹³C NMR spectra of 8k

¹H NMR spectra of 8m

¹³C NMR spectra of 8m

HRMS spectra of 8m

¹H NMR spectra of 8n

HRMS spectra of 8n

81 | Page

HRMS spectra of 9a

HRMS spectra of 9b

HRMS spectra of 9c

HRMS spectra of 9d

HRMS spectra of 9e