Electronic Supplementary Information

Highly efficient and reversible SO₂ capture by halogenated carboxylate ionic liquids

Guokai Cui,*^{,a} Yanjie Huang,^a Ruina Zhang,^b Fengtao Zhang,^a and

Jianji Wang*^{,a}

^{*a*} Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

^b School of mathematics and information Science, Henan Normal University, Xinxiang, Henan 453007, China

E-mail: chemcgk@163.com (G. Cui), jwang@htu.cn (J. Wang)

NMR and IR data of the typical carboxylate ILs

 $[P_{66614}][C_5H_{11}COO]$: ¹H NMR (CDCl₃): 0.83 (m, 15H, 5×CH₃), 1.20-1.59 (m, 54H, 27×CH₂), 2.11 (t, 2H, -CH₂COO), 2.37 (m, 8H, 4×PCH₂) ppm; ¹³C NMR (CDCl₃): 14.0, 14.1, 14.2, 18.7, 19.2, 21.7, 21.8, 22.0, 22.4, 22.5, 22.7, 22.8, 27.2, 27.7, 28.4, 29.1, 29.2, 29.4, 29.6, 29.7, 30.5, 30.7, 30.8, 30.9, 31.0, 31.2, 31.3, 31.4, 32.0, 32.5, 39.6, 179.3 (C=O) ppm; IR: 2955, 2923, 2854, 1578, 1465, 1417, 1376, 1301, 1262, 1213, 1162, 1110, 984, 914, 891, 865, 809, 721cm⁻¹.

 $[P_{66614}][2-BrC_5H_{10}COO]$: ¹H NMR (DMSO-d6): 0.85 (m, 15H, 5×CH₃), 1.23-1.47 (m, 54H, 27×CH₂), 2.25 (m, 8H, 4×PCH₂), 4.55 (t, 1H, -CHBrCOO) ppm; ¹³C NMR (DMSO-d6): 13.7, 13.8, 14.0, 17.2, 17.3, 17.7, 17.8, 20.5, 20.6, 21.2, 21.8, 21.9, 22.1, 22.3, 27.7, 28.1, 28.7, 29.0, 29.7, 29.8, 29.9, 30.1, 30.2, 30.4, 30.8, 31.3, 34.7, 50.3, 176.0 (C=O) ppm; IR: 2956, 2924, 2855, 1742, 1616, 1465, 1409, 1378, 1301, 1264, 1212, 1188, 1132, 1111, 1093, 1048, 989, 891, 862, 809, 720 cm⁻¹

 $[P_{66614}][6-ClC_5H_{10}COO]$: ¹H NMR (DMSO-d6): 0.85 (m, 12H, 4×CH₃), 1.23-1.51 (m, 54H, 27×CH₂), 2.25 (m, 10H, 4×PCH₂, -CH₂COO), 3.95 (t, 2H, -CH₂Cl) ppm; ¹³C NMR (DMSO-d6): 13.7, 13.8, 14.0, 17.2, 17.3, 17.7, 18.0, 20.5, 20.6, 21.2, 21.8, 21.9, 22.1, 24.0, 26.4, 28.1, 28.4, 28.7, 28.9, 29.0, 29.1, 29.7, 29.9, 30.1, 30.4, 30.8, 31.3, 33.3, 33.6, 43.4, 172.6 (C=O) ppm; IR: 2955, 2924, 2855, 1735, 1580, 1465, 1416, 1378, 1300, 1250, 1214, 1164, 1111, 1043, 988, 891, 862, 811, 721 cm⁻¹

 $[P_{66614}][6-BrC_5H_{10}COO]$: ¹H NMR (DMSO-d6): 0.85 (m, 12H, 4×CH₃), 1.24-1.49 (m, 54H, 27×CH₂), 2.26 (m, 10H, 4×PCH₂, -CH₂COO), 3.32 (t, 2H, -CH₂Br) ppm; ¹³C NMR (DMSO-d6): 13.7, 13.8, 14.0, 17.2, 17.3, 17.7, 17.8, 20.5, 20.6, 21.2, 21.8, 21.9, 22.1, 24.0, 27.8, 28.1, 28.7, 28.9, 29.0, 29.1, 29.7, 29.8, 29.9, 30.1, 30.4, 30.8, 31.3, 32.2, 33.3, 33.5, 174.5(C=O) ppm; IR: 2955, 2924, 2855, 1734, 1579, 1465, 1415, 1378, 1300, 1250, 1214, 1166, 1111, 1044, 988, 891, 862, 811, 720 cm⁻¹.

Ionic liquid	$d / g cm^{-3}$	η / cP	$T_m / °C$	$T_{dec} / °C$
[P ₆₆₆₁₄][C ₅ H ₁₁ COO]	0.9072	108.0	-68	240
$[P_{66614}][6-BrC_5H_{10}COO]$	0.9664	293.5	-63	279
$[P_{66614}][2-BrC_5H_{10}COO]$	0.9642	493.0	-64	305
$[P_{66614}][6-ClC_5H_{10}COO]$	0.9228	187.6	-62	277

Table S1. Physical properties of carboxylate ILs for SO₂ capture.^{*a*}

 a d is the density and η is the viscosity measured at 25°C. T_m is the melting point measured from DSC. T_{dec} is the decomposition temperature corresponding to a 10% mass loss measured using TGA.

Table S2. The effect of water constituent on SO₂ capture by acylamino-based ILs.^a

Ionic liquid	Water loading ^b (mole/mole IL)	SO ₂ dry (mole/mole IL)	SO ₂ wet ^{<i>b,c</i>} (mole/mole IL)
[P ₆₆₆₁₄][C ₅ H ₁₁ COO]	1.76	3.82	3.28
$[P_{66614}][6-BrC_5H_{10}COO]$	2.20	4.34	4.20
$[P_{66614}][2-BrC_5H_{10}COO]$	1.64	3.97	3.83
$[P_{66614}][6-ClC_5H_{10}COO]$	1.99	4.28	4.11

^{*a*} Performed at 20 °C and 1 bar for 30 min. ^{*b*} Relative humidity is 100%. ^{*c*} Does not include mass of loaded water.

Fig. S1 The thermal stability of $[P_{66614}]$ [6-BrC₅H₁₀COO] and $[P_{66614}]$ [C₅H₁₁COO] as a function of time under typical desorption condition (120 °C, 1.0 bar, 60 ml min⁻¹ N₂) for 30 h.¹

	Temperature/ °C		Available	
ILs ^a	Absorption	Desorption ^b	SO_2 absorption at 1 atm ^c	Reference
[P ₆₆₆₁₄][6-BrC ₅ H ₁₀ COO]	20	120	4.34	This Work
[P ₆₆₆₁₄][4-Br-PhCOO]	20	120	4.12	Wang ²
$[P_{66614}][BrCH_2COO]$	20	120	3.89	Wang ²
$[P_{66614}][Tetz]$	20	80	3.72	Wang ³
[Emim][SCN]	20	80	2.99	$Wang^4$
[K(TX-7)][SCN]	20	80	3.96	Wang ⁵
[Bmim][BF ₄]	20	20 ^e	1.50	Riisager ⁶
$[Bmim][Tf_2N]$	20	20 ^e	1.33	Riisager ⁶
[TMGBu ₂][Tf ₂ N]	20	20 ^e	1.52	Riisager ⁶
[TMG][L]	40^{d}	100	1.34	Han ⁷ , Kim ⁸
[TMG][PhO]	20	100 ^e	1.78	Zhang ⁹
[TMG][TE]	20	100^{e}	2.93	Zhang ⁹
[E ₁ mim][MeSO ₃]	30	100	2.30	Kim ⁸
[Bmim][MeSO ₄]	50	130 ^f	0.98	$Jung^{10}$
[Bmim][CH ₃ COO]	25	130 ^f	1.31	Shiflett ¹¹ , Jung ¹⁰

Table S3. The comparison of SO_2 absorption by anion-functionalized ILs.

^{*a*}[P₆₆₆₁₄][6-BrC₅H₁₀COO], trihexyl(tetradecyl)phosphonium 6-bromo-*n*-hexanoate;

[P₆₆₆₁₄][BrCH₂COO], trihexyl(tetradecyl)phosphonium bromoacetate;

[P₆₆₆₁₄][4-Br-PhCOO], trihexyl(tetradecyl)phosphonium 4-bromobenzoate;

[P₆₆₆₁₄][Tetz], trihexyl(tetradecyl)phosphonium tetrazolate;

[Emim][SCN], 1-ethyl-3-methylimidazolium thiocyanate;

[K(TX-7)][SCN], 4-nonylphenyl-polyethylene glycol potassium thiocyanate;

[Bmim][BF₄], 1-butyl-3-methylimidazolium tetrafluoroborate;

[Bmim][Tf₂N], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide;

[TMGB₂][Tf₂N], tetramethydibutylguandinium bis(trifluoromethylsulfonyl)imide;

[TMG][L], 1,1,3,3-tetramethyguandinium lactate;

[TMG][PhO], 1,1,3,3-tetramethyguandinium phenolate;

[TMG][TE], 1,1,3,3-tetramethyguandinium trifluoroethoxylate;

[E₁mim][MeSO₃], 1-ethylene glycol monomethyl ether-3-methylimidazolium methanesulfonate;

[Bmim][MeSO₄], 1-butyl-3-methylimidazolium methylsulfate;

[Bmim][CH₃COO], 1-butyl-3-methylimidazolium acetate.

A	The absorption enthalpy (kJ mol ⁻¹)			
Anion	$\Delta H_1 (CO \cdots S)$	$\Delta H_2 (CO \cdots S)$	$\Delta H_3 (X \cdots S)$	
[6-BrC ₅ H ₁₀ COO]	-102.0	-60.17	-13.8	
$[6-ClC_5H_{10}COO]$	-101.7	-59.3	-9.4	
[2-BrC ₅ H ₁₀ COO]	-88.3	-56.2	-28.3	
$[C_5H_{11}COO]$	-102.6	-60.18	-	

Table S4. The halogen group in anion-functionalized ILs on SO_2 absorption enthalpies of anion-SO₂ complexes.

Fig. S2 The FT-IR spectra of $[P_{66614}][C_5H_{11}COO]$, $[P_{66614}][6-BrC_5H_{10}COO]$, $[P_{66614}][2-BrC_5H_{10}COO]$, and $[P_{66614}][6-ClC_5H_{10}COO]$ after the absorption of SO₂ at 20 °C and 1 bar to show the CO···SO₂ interactions clearly.

References:

- (1) Ren, J.; Wu, L.; Li, B.-G. Ind. Eng. Chem. Res. 2013, 52, 8565.
- (2) Cui, G.; Zheng, J.; Luo, X.; Lin, W.; Ding, F.; Li, H.; Wang, C. Angew. Chem., Int. Ed. 2013, 52, 10620.
- (3) Wang, C. M.; Cui, G. K.; Luo, X. Y.; Xu, Y. J.; Li, H. R.; Dai, S. J. Am. Chem. Soc. 2011, 133, 11916.
- (4) Wang, C.; Zheng, J.; Cui, G.; Luo, X.; Guo, Y.; Li, H. Chem. Commun. 2013, 49, 1166.
- (5) Ding, F.; Zheng, J.; Chen, Y.; Chen, K.; Cui, G.; Li, H.; Wang, C. Ind. Eng. Chem. Res. 2014, 53, 18568.
- (6) Huang, J.; Riisager, A.; Wasserscheid, P.; Fehrmann, R. Chem. Commun. 2006, 4027.
- (7) Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem., Int. Ed. 2004, 43, 2415.
- (8) Hong, S. Y.; Im, J.; Palgunadi, J.; Lee, S. D.; Lee, J. S.; Kim, H. S.; Cheong, M.; Jung, K. D. *Energy Environ. Sci.* **2011**, *4*, 1802.
- (9) Shang, Y.; Li, H. P.; Zhang, S. J.; Xu, H.; Wang, Z. X.; Zhang, L.; Zhang, J. M. Chem. Eng. J. 2011, 175, 324.
- (10) Lee, K. Y.; Gong, G. T.; Song, K. H.; Kim, H.; Jung, K. D.; Kim, C. S. Int. J. Hydrogen Energy 2008, 33, 6031.
- (11) Shiflett, M. B.; Yokozeki, A. Ind. Eng. Chem. Res. 2010, 49, 1370.