Electronic Supplementary Information

Remarkable hydrogen storage properties at low temperature of Mg-Ni composites prepared by hydriding combustion synthesis and mechanical milling

Yajun Tan, Qifeng Mao, Wei Su, Yunfeng Zhu, Liquan Li*

College of Materials Science and Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing, 210009, P.R. China.E-mail: lilq@njtech.edu.cn; Tel: +86-25-83587255

Fig. S1 The Rietveld analysis profiles of $Mg_{100-x}Ni_x$ (x=0, 5, 10 and 20) composites prepared by

HCS. Observed (dots), Calculated (top line) and different curves (bottom line)

Fig. S2 Particle size distribution of Mg_{100-x}Ni_x (x=0, 5, 10 and 20) composites according to the SEM images: (a), (b), (c) and (d) are corresponding to x=0, 5, 10 and 20, respectively.

Fig. S3. DSC curve of Mg₂NiH₄ prepared by HCS+MM

Fig. S4 Isothermal hydrogenation curves of the HCS+MM products of Mg_{100-x}Ni_x (x=0, 5, 10 and

20) at (a) 493 K and (b) 523 K under 3.0 MPa hydrogen pressure

Temperature (K)	Hydrogen absorption capacity (wt.%)				
	Mg	Mg ₉₅ Ni ₅	$Mg_{90}Ni_{10}$	$Mg_{80}Ni_{20} \\$	
313 K	0	1.32	2.07	3.70	
473 K	3.25	5.80	5.69	4.27	
493 K	5.21	5.79	5.73	4.28	
523 K	5.58	5.86	5.78	4.32	

Table S1 Hydrogen absorption capacities of $Mg_{100-x}Ni_x$ (x=0, 5, 10 and 20) composites at 473 K, 493 K and 523 K under 3.0 MPa hydrogen pressure within 600 s

Table S2 Isothermal dehydrogenation curves of Mg_{100-x}Ni_x (x=0, 5, 10 and 20) composites at 473

K, 493 K and 523 K under 0.001 MPa hydrogen pressure within 12	0 min

Temperature (K)	Hydrogen desorption capacity (wt.%)			
	Mg	Mg ₉₅ Ni ₅	Mg ₉₀ Ni ₁₀	$Mg_{80}Ni_{20}$
473 K	0.22	0.87	1.09	1.84
493 K	0.30	2.21	2.46	2.76
523 K	0.78	5.36	5.24	3.92

Fig. S5. XRD patterns of $Mg_{100-x}Ni_x$ (x=0, 5, 10 and 20) composites after dehydrogenation at 523

K

Fig. S6. JMA plots of $\ln[-\ln(1-\alpha)]$ vs $\ln(t)$ for the dehydrogenation of the Mg₉₀Ni₁₀ composite at different temperatures. The samples with reacted fraction of $0 < \alpha < 0.5$ was used