Supporting Information

Synthesis of Nd³⁺/Yb³⁺ Sensitized Upconversion Core-shell Nanocrystals with Optimized Hosts and Doping Concentrations

Kun Wang,¹ Wanli Qincheng,¹ Yong Zhang,²* Ru Qiao,² Sheng Li¹ and Zhengquan Li^{1,2}*

Figure S1. Size distributions of the NaYF₄ NCs (seeds) and the core-shell NaYF₄@NaGdF₄ NCs. Average diameters of the NaYF₄ NCs and NaYF₄@NaGdF₄ NCs are about 32.9nm and 42.7nm, respectively. This data confirms the uniformity of these core-shell NCs and the increase in diameter after the shell growth.

Figure S2. XRD patterns of (A) the NaYF₄:Yb,Tm seeds and (B) the prepared NaYF₄:Yb,Tm@NaGdF₄:Yb,Nd NCs. All diffraction peaks of the NaYF₄:Yb,Tm NCs can be clearly indexed to the pure hexagonal NaYF₄ crystal (JCPDS No. 28-1192). XRD patterns of the NaYF₄:Yb,Tm@NaGdF₄:Yb,Nd NCs were much similar to those of the core NCs, albeit a little stronger in intensity. The increased intensity could have resulted from the size increase of the NCs and the similar crystal structure between NaYF₄ and NaGdF₄ (JCPDS No. 27-0699).

Element	Gd	Y	Yb	Nd	Tm	Na	F (1s)	C (1s)	0
	(3d)	(4d)	(4d)	(4d)	(4d)	(1s)			(1s)
Content	18.13	8.37	3.93	2.12	0.01	13.47	37.35	12.83	3.79
(at.%)									

TableS1.ElementcontentsofthesurfaceofNaYF4:Yb(20%),Tm(0.5%)@NaGdF4:Yb(10%),Nd(10%)determinedbyXPSanalysis.

The XPS analysis was also employed to investigate the surface information of the core-shell Y@Gd NCs. Though all the lanthanide elements could be detected in the fine-scan mode, it should be noted that the Gd element is predominant on the surface (18.13 at.%) of the core-shell NCs, which is significantly higher than the element Y (8.37 at.%). These XPS results imply that the surface of the core-shell nanocrystals mainly consists of NaGdF₄ shell. The signals from C and O are from the surface adsorbed oleic acids (OA) on the core-shell NCs during synthesis.

Figure S3. UC emission spectra of NaYF₄:Yb(20%),Tm(0.5%) and NaGdF₄:Yb(20%),Tm(0.5%) under 980nm excitation. This data shows that NaYF₄ is a better host for UC fluorescence than NaGdF₄ for Yb³⁺/Tm³⁺ codoping when they have a similar size, doping level and the same hexagonal phases.

Figure S4. Comparison of UC emission intensities of NaYF₄:Yb,Tm@NaYF₄:Yb,Nd UCNs under 980nm excitation by changing the doping concentration of different ions: (A) Yb³⁺ in the core; (B) Tm³⁺ in the core; (C) Yb³⁺ in the shell; (D) Nd³⁺ in the shell.