Supporting Information

A highly selective fluorescent chemosensor based on quinoline derivative for zinc ion in pure water

Ye Won Choi, Jae Jun Lee, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u>

Fig. S1 Job plot of 1 and Zn^{2+} in buffer solution (10 mM bis-tris, pH 7.0). The total concentrations of 1 and Zn^{2+} were 50 μ M.

Fig. S2 (a) FT-IR spectra of **1** and **1**- Zn^{2+} complex in the range of wavenumber 4000-3000 cm⁻¹. (b) FT-IR spectra of **1** and **1**- Zn^{2+} complex in the range of wavenumber 1900-1350 cm⁻¹.

Fig. S3 Benesi-Hildebrand plot of **1** (at 536 nm), assuming 1:1 stoichiometry for association between **1** and Zn^{2+} .

Fig. S4 Change in the ratio of fluorescence intensity (λ_{ex} = 350 nm; λ_{em} = 536 nm) of 1 (20 μ M) with Zn²⁺.

Fig. S5 Competitive selectivity of **1** (20 μ M) toward Zn²⁺ (20 equiv) in the presence of other metal ions (20 equiv) in buffer solution (10 mM bis-tris, pH 7.0).

Fig. S6 Fluorescence intensity (at 536 nm) of **1** as a function of Zn^{2+} concentration ([**1**] = 20 μ mol/L and [Zn^{2+}] = 0.0-20.0 μ mol/L).

(b)

Excited State 1	Wavelength	Percent (%)	Oscillator strength
$H \rightarrow L$	337.51 nm	99 %	0.1009
Excited State 2	Wavelength	Percent (%)	Oscillator strength
$H-1 \rightarrow L$	319.24 nm	96 %	0.047
$\mathrm{H} \to \mathrm{\Gamma}$		2 %	

(c)

Molecular orbital (1)					
LUMO	НОМО	НОМО - 1			
(-1.646 eV)	(-5.829 eV)	(-5.999 eV)			

Fig. S7 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1. (b) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1.

(a)

(b)

Excited State 1	Wavelength	Percent (%)	Oscillator strength
$H \rightarrow L$	412.99 nm	99 %	0.0004
Excited State 2	Wavelength	Percent (%)	Oscillator strength
$H-1 \rightarrow L$	397.83 nm	98 %	0.1188

(c)

Fig. S8 (a) The theoretical excitation energies and the experimental UV-vis spectrum of 1- Zn^{2+} . (b) The major electronic transition energies and molecular orbital contributions for 1- Zn^{2+} (H = HOMO and L = LUMO). (c) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1- Zn^{2+} .

9

(a)