Electronic Supplementary Material (ESI) for RSC Advances.

Atmospheric-pressure Microplasma as Anode for Rapid and

Simple Electrochemical Deposition of Copper and Cuprous

Oxide Nanostructures

Yuexiang Lu,^{*a,b} Zhonghua Ren,^{a,b} Hang Yuan,^{a,b} Zhe Wang,^{a,b} Bo Yu^{*a,b} and Jing Chen^{a,b}

^aInstitute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China. ^bBeijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China. *Email: luyuexiang@mail.tsinghua.edu.cn; cassy yu@tsinghua.edu.cn.

Table of Contents

XPS data of Cu and Cu ₂ O nanoparticles	S2
Size distribution of Cu and Cu ₂ O nanoparticles	S3

Figure S1. XPS data of nanoparticles deposited on ITO cathodes at different conditions. a) Survey spectra, b) Cu 2p, c) Cu LMM Auger spectra. a. 25° C, 1 M CuSO₄ and b. 70° C, 100 mM CuSO₄. The discharge current is 6 mA and discharge time is 120s.

Figure S2. Size distribution of nanoparticles deposited on ITO cathodes at different conditions. 25° C, 1 M CuSO₄ with discharge time of a) 5 s and b) 120s. 70° C, 100 mM CuSO₄ with discharge time of c) 5 s and d) 120s. The discharge current is 6 mA.