Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF TRIAZINE DENDRIMERS WITH DABCO GROUPS

R. S. Sreeperumbuduru, Z.M. Abid, H.-H. Chen, S. M. McGillivray*, E. E. Simanek*

Departments of Chemistry and Biology, Texas Christian University, Fort Worth TX, 76129

Contributions

A majority of the synthesis work was accomplished by R.S.S. Z.M.A. contributed to the synthetic effort. Both R.S.S. and Z.M.A. collected the biological data. Z.M.A. maintained the cell preparations. H.H.C. contributed to the design of the study and one synthetic compound. S.M.G. supervised the biological assays. E.E.S. supervised the synthetic efforts. R.S.S. and Z.M.A. assembled the manuscript. S.M.G. and E.E.S. supervised communication of the efforts.

Table of Contents

General Experimental	5
Compound 1-Me	
Experimental	6
SI Figure 1. ¹ H NMR spectrum of 1-Me	7
SI Figure 2. ¹³ C NMR spectrum of 1-Me	8
Compound 1-Bz	
Experimental	9
SI Figure 3. ¹ H NMR spectrum of 1-Bz	10
SI Figure 4. ¹³ C NMR spectrum of 1-Bz	11
Compound 1-C ₁₂	
Experimental	12
SI Figure 5. ¹ H NMR spectrum of $1-C_{12}$	13
SI Figure 6. ¹³ C NMR spectrum of $1-C_{12}$	14
Compound 1-Me ₂	
Experimental	15
SI Figure 7. ¹ H NMR spectrum of 1-Me₂	16
SI Figure 8. 13 C NMR spectrum of 1-Me ₂	17
Compound 1-Bz ₂	
Experimental	18
SI Figure 9. ¹ H NMR spectrum of $1-Bz_2$	19
SI Figure 10. ¹³ C NMR spectrum of $1-Bz_2$	20
Compound $1-(C_{12})_2$	
Experimental	21
SI Figure 11. ¹ H NMR spectrum of $1-(C_{12})_2$	22
SI Figure 12. ¹³ C NMR spectrum of $1-(C_{12})_2$	23
Compound 8a	
Experimental	24
SI Figure 13. ¹ H NMR spectrum of 8a	25
SI Figure 14. ¹³ C NMR spectrum of 8a	26
SI Figure 15. Mass Spectra spectrum of 8a	27
Compound 8c	
Experimental	28
SI Figure 16. ¹ H NMR spectrum of 8c	29
SI Figure 17. ¹³ C NMR spectrum of 8 c	30
SI Figure 18. Mass Spectra spectrum of 8c	31
Compound 2-Me	
Experimental	32
SI Figure 19. ¹ H NMR spectrum of 2-Me	33
SI Figure 20. ¹³ C NMR spectrum of 2-Me	34

Compound 2-Bz		
Experimental		35
SI Figure 21. ¹ H	I NMR spectrum of 2-Bz	36
SI Figure 22. ¹³ C	C NMR spectrum of 2-Bz	37
Compound $2-C_{12}$	-	
Experimental		38
SI Figure 23. ¹ H	I NMR spectrum of $2-C_{12}$	39
SI Figure 24. ¹³	C NMR spectrum of $2-C_{12}$	40
Compound 9a	1	
Experimental		41
SI Figure 25. ¹ H	H NMR spectrum of 9a	42
SI Figure 26. 13	C NMR spectrum of 9a	43
SI Figure 27. M	ass Spectra spectrum of 9a	44
Compound 9c		
Experimental		45
SI Figure 28 ⁻¹ F	I NMR spectrum of 9c	46
SI Figure 20 13	C NMR spectrum of 9 c	10
SI Figure 30 M	ass Spectra spectrum of 9 c	47
Compound 3-Mo	ass spectra spectrum of X	0
Experimental		40
SI Figure 21 ¹ U	NMD spectrum of 3 Me	49
SI Figure 31. Π	2 NMD an approximation of $2 Ma$	50
SI Figure 32. C	NMR spectrum of 5-Me	51
Compound 3-BZ		50
Experimental		52
SI Figure 33. ¹ H	NMR spectrum of 3-BZ	53
SI Figure 34.	C NMR spectrum of 3-Bz	54
Compound $3-C_{12}$		
Experimental		55
SI Figure 35. ¹ H	I NMR spectrum of $3-C_{12}$	56
SI Figure 36. ¹³ C	C NMR spectrum of 3-C ₁₂	57
Compound 10a		
Experimental		58
SI Figure 37. ¹	H NMR spectrum of 10a	59
SI Figure 38.	C NMR spectrum of 10a	60
SI Figure 39. M	ass spectra spectrum of 10a	61
Compound 10c		
Experimental		62
SI Figure 40. ¹ H	H NMR spectrum of 10c	63
SI Figure 41.	C NMR spectrum of 10c	64
SI Figure 42. M	ass spectra spectrum of 10c	65
Compound 4-Me		
Experimental		66
SI Figure 43. ¹ H	I NMR spectrum of 4-Me	67
SI Figure 44. ¹³	C NMR spectrum of 4-Me	68
Compound 4-Bz	-	
Experimental		69
SI Figure 45. ¹ H	NMR spectrum of 4-Bz	70
SI Figure 46. ¹³	C NMR spectrum of 4-Bz	71
Compound 4-C ₁₂	*	
Experimental		72
SI Figure 47. ¹ H	I NMR spectrum of 4-C ₁₂	73
C	▲ ==	

SI Figure 48. 13 C NMR spectrum of 4-C ₁₂	74
Compound 11a	
Experimental	75
SI Figure 49. ¹ H NMR spectrum of 11a	76
SI Figure 50. ¹³ C NMR spectrum of 11a	77
SI Figure 51. Mass Spectra spectrum of 11a	78
Compound 11c	
Experimental	79
SI Figure 52. ¹ H NMR spectrum of 11c	80
SI Figure 53. ¹³ C NMR spectrum of 11c	81
SI Figure 54. Mass Spectra spectrum of 11c	82
Compound 6-Me	
Experimental	83
SI Figure 55. ¹ H NMR spectrum of 6-Me	84
SI Figure 56. ¹³ C NMR spectrum of 6-Me	85
Compound 6-Bz	
Experimental	86
SI Figure 57. ¹ H NMR spectrum of 6-Bz	87
SI Figure 58. ¹³ C NMR spectrum of 6-Bz	88
Compound $6-C_{12}$	
Experimental	89
SI Figure 59. ¹ H NMR spectrum of $6-C_{12}$	90
SI Figure 60. ¹³ C NMR spectrum of $6-C_{12}$	91
MIC ASSAY- Graphical Representation	92-96

General Experimental

Microwave: A CEM SP Discovery microwave was utilized for these experiments. Reactions were performed in dynamic mode wherein microwave power is modulated to maintain the set point temperature.

Automated Chromatography: A Combiflash RF Automated Chromatographer (Teledyne ISCO) was used for these experiments. All the purifications were performed using a solid loading method.

Compound 1-Me:

Methyl iodide (0.5 ml, 8.9 mmol) was added slowly to a solution of DABCO (1 g, 8.9 mmol) in hexane (25 ml) at 0°C and stirred for 1 hr at room temperature. The solvent was evaporated, and residue was washed with hexanes (100 ml) and dried to yield a pale yellow solid (1.02 g, 90%). ¹H NMR (400 MHz, CD₃OD) δ 3.50 (t, 6H, DABCO), δ 3.25 (t, 6H, DABCO), δ 3.15 (t, 3H, - CH₃); ¹³C NMR (100 MHz, D₂O) 54.0, 44.3 (DABCO), 51.7 (-CH₃).

CH₃ N.⊕

SI Figure 1. ¹H NMR spectrum of **1-Me**

SI Figure 2. ¹³C NMR spectrum of compound **1-Me**

Compound **1-Bz**:

Benzyl Chloride (5.13 ml, 44.6 mmol) is added slowly to the solution of DABCO (5.03 g, 44.6 mmol) in THF (50 ml) at room temperature and a white precipitate is formed after 10 min. The solvent was evaporated and the precipitate was washed with ethyl acetate and hexane and dried to yield a white solid (10.25 g, 96.24%). ¹H NMR (400 MHz, DMSO) δ 7.52 (C₆H₅), δ 4.63 (C₆H₅-CH₂), δ 3.40 (t, 6H, DABCO), δ 3.01 (t, 6H, DABCO); ¹³C NMR (100 MHz, D₂O) 133.0, 130.8, 129.2, 126.0 (C₆H₅-), 68.3 (C₆H₅-CH₂), 51.9, 44.2 (DABCO).

SI Figure 3. ¹H NMR spectrum of compound **1-Bz**

133.06 130.82 - 126.00 8-54.40 44.26 -19.12 14.99 ppm

SI Figure 4. ¹³C NMR spectrum of compound **1-Bz**

Compound 1-C12:

1-Bromododecane (2.5 ml, 10.4 mmol) was added slowly to a solution of DABCO (2.3 g, 20.8 mmol) in methanol (21 ml) at 0°C and stirred for 24 hrs at room temperature. The solvent was evaporated, and the residue was washed with (100 ml) portions of diethyl ether and dichloromethane to yield a pale white solid (5.04 g, 86%). ¹H NMR (400 MHz, DMSO) δ 3.33 (t, 6H, DABCO), δ 3.22 (t, 2H, -CH₃(CH₂)₉CH₂CH₂-), δ 3.02 (t, 6H, DABCO), δ 1.65 (m, 2H, CH₃(CH₂)₉CH₂CH₂-), δ 1.24 (m, 18H, CH₃(CH₂)₉CH₂CH₂-), δ 0.85 (t, 3H, -CH₃); ¹³C NMR (100 MHz, D₂O) 64.8 (CH₃(CH₂)₉CH₂CH₂-), 52.0, 44.2 (DABCO), 32.0 (CH₃(CH₂)₉CH₂CH₂-), 29.9, 29.6, 26.5, 22.6, 21.7, 19.4, 15.9 (CH₃(CH₂)₉CH₂CH₂), 13.8 (CH₃(CH₂)₉CH₂CH₂-).

SI Figure 5. ¹H NMR spectrum of compound **1-C12**

SI Figure 6. ¹³C NMR spectrum of compound **1-C12**

Compound 1-(Me)₂:

Methyl iodide (0.025 ml, 0.4 mmol) was added slowly to a solution of **1-Me** (50 mg, 0.4 mmol) in Acetonitrile (2 ml) at 0°C and stirred for 1 hr at room temperature. The solvent was evaporated and the precipitate was washed with portions (10 ml) of diethyl ether and acetonitrile to yield a white solid (41.53 mg, 73%). ¹H NMR (400 MHz, D₂O) δ 4.02 (t, 12H, DABCO), δ 3.35 (t, 6H, -CH₃); ¹³C NMR (100 MHz, D₂O) 54.3, 53.3 (DABCO), 52.5 (-CH₃).

 CH_3 O(1) O(1)

SI Figure 7. ¹H NMR spectrum of compound $1-(Me)_2$

SI Figure 8. ¹³C NMR spectrum of compound **1-(Me)**₂

Compound 1-(Bz)₂:

Benzyl Chloride (0.04 ml, 0.33mmol) was added slowly to a solution of **1-Bz** (60 mg, 0.33 mmol) in THF (3 ml) and stirred for 48 hrs at room temperature. The solvent was evaporated and the precipitate was washed with portions (10 ml) of diethyl ether and acetonitrile to yield a white solid (66.24 mg, 75%). ¹H NMR (400 MHz, D₂O) δ 7.54 (10H, C₆H₅), δ 4.67 (s, 4H, C₆H₅-CH₂), δ 3.88 (t, 6H, DABCO); ¹³C NMR (100 MHz, D₂O) 132.8, 131.6, 129.6, 124.7 (C₆H₅-), 68.9 (C₆H₅-CH₂), 54.3, 50.7 (DABCO).

SI Figure 9. ¹H NMR spectrum of compound $1-(Bz)_2$

SI Figure 10. ¹³C NMR spectrum of compound $1-(Bz)_2$

Compound **1-(C12)**₂

1-Bromododecane (0.05 ml, 0.2 mmol) was added slowly to a solution of 1-C12 (50 mg, 0.18 mmol) in Acetonitrile (2 ml) at 0°C and stirred for 48 hrs at room temperature. The solvent was evaporated and the precipitate was washed with portions (10 ml) of diethyl ether and acetonitrile to yield a white solid (42.2 mg, 52%). ¹H NMR (400 MHz, D_2O)) δ 4.05 (t, 12H, DABCO), δ 3.47 (m, 4H, -CH₃(CH₂)₉CH₂CH₂-), δ 3.24 (m, 4H, CH₃(CH₂)₈CH₂CH₂CH₂CH₂ δ 1.72 (m, 4H, CH₃(CH₂)₉CH₂CH₂-), δ 1.27 (m, 32H, CH₃(CH₂)₈CH₂CH₂CH₂-), δ 0.77 (t, 6H, -CH₃). ¹³C 64.8 (CH₃(CH₂)₉CH₂CH₂-), 50.9 (DABCO), NMR (100 MHz, CD₃OD) 32.0 (CH₃(CH₂)₉CH₂CH₂-), 29.3, 28.7, 25.7, 22.3, 21.8 $(CH_3(CH_2)_9CH_2CH_2-),$ 13.0 (CH₃(CH₂)₉CH₂CH₂-).

SI Figure 11. ¹H NMR spectrum of compound $1-(C12)_2$

SI Figure 12. ¹³C NMR spectrum of compound $1-(C12)_2$

Compound 8a:

A solution of **7** (1.5 g, 2 mmol) with piperidine (510 mg, 6 mmol) and DIPEA (1.04 ml, 6 mmol) was stirred for 2 minutes in 20 ml of acetonitrile. The solution was irradiated in the microwave at 75°C for 45 min. The solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and evaporated under vacuum. The crude product was purified using automated chromatography to yield a pale yellow oil (1.44 g 90%). ¹H NMR (400 MHz, CD₃OD) δ 3.74 (t, 4H,-CH₂CH₂-N-CH₂CH₂CH₂-Q), δ 3.64-3.52 (t, 24H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.43 (m, 4H, C₃N₃-NHCH₂CH₂CH₂O); δ 3.13 (m, 4H, -C(O)-NHCH₂CH₂CH₂OCH₂), δ 3.43 (m, 4H, C₃N₃-NHCH₂CH₂CH₂O); δ 3.13 (m, 4H, -C(O)-NHCH₂CH₂CH₂CH₂O), δ 1.84-1.73 (m, 8H, -OCH₂CH₂CH₂-NH-), δ 1.63-1.56 (m, 6H, -CH₂CH₂-N-CH₂CH₂CH₂-), 1.44 (s, 18H, -C(CH₃)₃); 13C NMR (100 MHz, CDCl₃) 165.6 (C₃N₃), 164.0 (CO), 156.1 (C₃N₃), 78.8 -C(CH₃)₃), 70.5 (OCH₂CH₂O), 70.2 (OCH₂CH₂O), 69.5 (NHCH₂CH₂CH₂O), 69.2 (NHCH₂CH₂CH₂O), 38.1, 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃), 24.8 (-CH₂CH₂-N-CH₂CH₂-), 22.6 (-CH₂CH₂-N-CH₂CH₂-); MS (ESI-TOF) calcd for C₃₈H₇₂N₈O₁₀ 801.03, found 801.59 (M)⁺.

SI Figure 14. ¹³C NMR spectrum of compound **8a.**

Sample Name Ind Vol Data Filename 1.3 1.25 1.25 1.25	รรร79-ต -1 ราร79-ต.d	Position InjPosition ACQ Method	* 801	Instrument Name SampleType Comment 5914		Instrument 1 Sample
1.15 1.15 1.15						
1.05						
-						
0.95						
0.9						
0.85						
0.8						
0.75						
0.7						
0.65						
0.6						
0.55						
0.5						
0.45						
0.4 -						
0.35						
0.3						
0.25						
0.2						
0.15						
0.1	323.238	22				
0.05		449.8459	705.5382		1192.8793	1422.5
N	00 300	400 500 (300 700 80	00 900 1000 nts vs. Mass-to-Ch	1100 1200 13 arge (m/z)	300 1400

SI Figure 15. Mass spectrum of compound 8a.

Compound 8c:

Chloroacetyl chloride (0.32 ml, 3.99 mmol) was added drop wise to a solution of 8b (800 mg, 1.33 mmol) and DIPEA (0.694 ml, 3.99 mmol) in dichloromethane (20 ml) at 0°C. The solution was stirred for 2 hrs at room temperature. Then the solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and evaporated under vacuum. The crude was purified using automated chromatography to yield a clear oil (270 mg 27%). ¹H NMR (400 MHz, CD₃OD) δ 4.05 (s, 4H, -NHC(O)CH₂Cl), δ 3.87 (t, 4H, -CH₂CH₂-N-CH₂CH₂-), δ 3.65-3.55 (t, 24H, $CH_2OCH_2CH_2OCH_2CH_2OCH_2),$ δ 3.32 (m, 8H, -C(O)-NHC \mathbf{H}_2 CH₂CH₂O, C_3N_3 -NHCH₂CH₂CH₂O); δ 1.89-1.73 (m, 8H, -OCH₂CH₂CH₂), δ 1.63 (m, 6H, -CH₂CH₂-N-CH₂CH₂-); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, (C₃N₃), 152.3 (CO), 70.6 (OCH₂CH₂O), 70.3, 70.4 (OCH₂CH₂O), 68.9 (NHCH₂CH₂CH₂O), 44.5 (-CH₂CH₂-N-CH₂CH₂-), 42.7 ((CO)CH₂Cl), 38.7, 37.0 (NHCH₂CH₂CH₂O), 29.7, 28.6 (NHCH₂CH₂CH₂O); 25.8 (-CH₂CH₂-N-CH₂CH₂-), 24.7 (-CH₂CH₂-N-CH₂CH₂CH₂); MS (ESI-TOF) calcd for C₃₂H₅₈Cl₂N₈O₈ 753.76, found 753.45 $(M)^+$.

SI Figure 17. ¹³C NMR spectrum of compound **8**c

Compound 2-Me:

1-Me (23 mg, 0.18 mmol) was added to a solution of 8c (45 mg, 0.06 mmol) in methanol (1 ml). The above solution was stirred for 2 days at 55° C. The crude product was purified by precipitation with methanol and acetonitrile. The final product was further washed with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to give a pale yellow solid (42 mg, 73%). ¹H NMR (400 MHz, CD₃OD) δ 4.47 (s, 4H, -NHC(O)CH₂), δ 4.38-4.16 (t, 24H, 3.79 (t, DABCO), δ 4H, $-CH_2CH_2-N-CH_2CH_2CH_2-$), δ 3.68-3.58 (m, 24H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.45 (m, 4H, -C(O)-NHCH₂CH₂CH₂O), 3.38 (m, 4H, C₃N₃-NHCH₂CH₂CH₂O); δ 3.33 (-CH₃), δ 1.88-1.84 (m, 8H, -OCH₂CH₂CH₂), δ 1.72-1.59 (m, 6H, -CH₂CH₂-N-CH₂CH₂-); ¹³C NMR (100 MHz, CDCl₃) δ 161.9, (C₃N₃), 153.2 (CO), 70.1 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 68.5 (NHCH₂CH₂CH₂O), 66.7 (NHCH₂CH₂CH₂O), 66.7 ((CO)CH₂Cl), 53.0, 51.9 (DABCO), 50.9 (CH3) 44.7, 44.2 (-CH₂CH₂-N-CH₂CH₂-), 29.2, 28.7 (NHCH₂CH₂CH₂O), 25.0, 24.3 (-CH₂CH₂-N-CH₂CH₂CH₂-).

SI Figure 19. ¹H NMR spectrum of compound **2-Me**

SI Figure 20. ¹³C NMR spectrum of compound **2-Me**

Compound 2-Bz:

1-Bz (41 mg, 0.2 mmol) was added to a solution of **8c** (50 mg, 0.07 mmol) in methanol (1 ml). The solution was stirred for 2 days at 55° C. The crude product was purified by precipitation with methanol and acetonitrile. The final product was further washed with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to give a white solid (43 mg 58%). ¹H NMR (400 MHz, CD₃OD) δ 7.65-7.60 (d, 10H, C₆H₅-), δ 4.56 (s, C₆H₅-CH₂), δ 4.42 (s, 4H, -NHC(O)CH₂.), δ 4.32-4.03 (t, 24H, DABCO), δ 3.75 (t, 4H, -CH₂CH₂-N-CH₂CH₂CH₂-), δ 3.61-3.45 (t, 24H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.33-3.20 (t, 8H, C(O)-NHCH₂CH₂CH₂O, C₃N₃-NHCH₂CH₂CH₂O); δ 1.88-1.84 (m, 8H, -OCH₂CH₂CH₂), δ 1.72-1.61 (m, 6H, -CH₂CH₂-N-CH₂CH₂CH₂CH₂-); ¹³C NMR (100 MHz, CD₃OD) δ 167.7, 161.9 (C₃N₃), 157.7 (CO), 131.2, 130.4, 129.0, 126.4 (C₆H₅-), 70.1 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 68.2 (C₆H₅-CH₂), 67.4 (NHCH₂CH₂CH₂O), 62.5 ((CO)CH₂Cl), 52.1, 50.6 (DABCO), 44.7, 41.9 (-CH₂CH₂-N-CH₂CH₂-), 37.8, 36.6 (NHCH₂CH₂CH₂O), 28.8 (NHCH₂CH₂CH₂O); 25.6, 24.2 (-CH₂CH₂-N-CH₂CH₂CH₂-).

SI Figure 21. ¹H NMR spectrum of compound **2-Bz**

36

SI Figure 22. ¹³C NMR spectrum of compound **2-Bz**

Compound 2-C12:

1-C12 (45mg, 0.16mmol) was added to a solution of 8c (40mg, 0.05) in methanol (1ml). The above solution was stirred for 2days at 55^oC. The crude product was purified by precipitation with methanol and acetonitrile. The final product is further washed with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to give a white solid (54 mg, 81%). ¹H NMR (400 MHz, CD₃OD) δ 4.46 (s, 4H, -NHC(O)CH₂-), δ 4.36-4.10 (t, 24H, DABCO), δ 3.75 (t, 4H, -CH₂CH₂-N-CH₂CH₂CH₂-), δ 3.58-3.56 (t, 24H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.36-3.23 (m, 8H, -NHCH₂CH₂CH₂O) δ 3.21 (m, 4H, -CH3(CH₂)₉CH₂CH₂), δ 1.85-1.82 (m, 12H, -OCH₂CH₂CH₂. -CH3(CH₂)₉CH₂CH₂-), δ 1.70-1.56 (t, 6H, -CH₂ CH₂CH₂-N-CH₂CH₂-) 1.42-1.31 (m, 36H, -CH3(CH₂)₉CH₂CH₂-), 0.91 (t, 6H, CH₃(CH₂)₉CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 163.5, 161.9 (C₃N₃), 152.7 (CO), 70.1 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 68.7 (NHCH₂CH₂CH₂O), 68.3 (NHCH₂CH₂CH₂O), 64.9 ((CO)CH₂Cl), 64.3 (C₁₂H₂₅) 52.0, 50.8 (DABCO), 44.7, 44.1 (-CH₂CH₂-N-CH₂CH₂-), 37.6, 36.7 (NHCH₂CH₂CH₂O), 31.6, 29.3, 29.2, 29.1 (CH₃(CH₂)₉CH₂CH₂-), 26.1, 25.7, 24.4 (CH₃(CH₂)₉CH₂CH₂-, CH₃(CH₂)₉CH₂CH₂-, -NHCH₂CH₂CH₂O), 22.3, 21.8 (-CH₂CH₂-N-CH₂CH₂CH₂, 13.0 (CH₃(CH₂)₉CH₂CH₂-).

SI Figure 23. ¹H NMR spectrum of compound **2-C12**

SI Figure 24. ¹³C NMR spectrum of compound **2-C12**

Compound 9a:

A solution of 7 (1.5 g, 2 mmol) with N-Boc piperazine (1.1 g, 6 mmol) and DIPEA (1.04 ml, 6 mmol) in 20 ml of acetonitrile was stirred for 2 minutes. Then, the solution was irradiated in the microwave at 80°C for 45 min of stirring. The solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and evaporated under vacuum. The crude was purified using automated chromatography to yield a clear oil (1.64 g, 91%). ¹H NMR (400 MHz, CDCl₃) δ 3.74 (t, 4H, - CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.57-3.53 (br, m, 20H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.45 (t, 8H, -NHCH₂CH₂CH₂O-), 3.22 (m, 4H, - NHCH₂CH₂CH₂O-), 1.85-1.77 (m, 8H, OCH₂CH₂CH₂), 1.52 (s, 27H, -C(CH₃)₃); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 165.1 (C₃N₃), 156.08, 154.85 (CO), 79.9, 78.9 C(CH₃)₃), 70.6, 70.3 (OCH₂CH₂O), 69.5 (NHCH₂CH₂CH₂O), 69.3 (NHCH₂CH₂CH₂O), 42.8 (-CH₂CH₂-N-CH₂CH₂-PiPerazine), 38.5, 38.2 (NHCH₂CH₂CH₂O), 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃); MS (ESI-TOF) calcd for C₄₂H₇₉N₉O₁₂, 902.13, found 902.65 (M)⁺.

SI Figure 25. ¹H NMR spectrum of compound **9a.**

SI Figure 26. ¹H NMR spectrum of compound **9a**

Compound **9c**:

Chloroacetyl chloride (0.4 ml, 4.8 mmol) was added drop wise to the solution of **9b** (700 mg, 1.2 mmol) and DIPEA (0.625 ml, 3.6 mmol) in dichloromethane (12 ml) at 0°C. The above solution was stirred for 2 hrs at room temperature. Then the solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and evaporated under vacuum. The crude was purified using automated chromatography to yield a pale yellow oil (270 mg 27%). ¹H NMR (400 MHz, CD₃OD) δ 4.04 (s, 6H, -NH-C(O)CH₂Cl), δ 3.92-3.85 (t, 4H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.66-3.60 (br, m, 24H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, -OCH₂CH₂OCH₂), 1.84 (m, 8H, OCH₂CH₂CH₂); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 166.0 (C₃N₃), 165.4, 156.0 (CO), 70.5 (OCH₂CH₂O), 68.5 (CH₂CH₂CH₂O), 59.9 (CH₂CH₂-N-CH₂CH₂-), 50.64 (CH₂CH₂-N-CH₂CH₂-), 43.9, 42.7 ((CO)CH₂Cl) 38.5 (CH₂CH₂CH₂CH₂O), 28.6 (NHCH₂CH₂CH₂O); MS (ESI-TOF) calcd for C₃₃H₅₈Cl₃N₉O₉ 831.23, found 832.42 (M + H)⁺.

SI Figure 28. ¹H NMR spectrum of compound **9c**

46

SI Figure 29. ¹³C NMR spectrum of compound 9c

SI Figure 30. Mass spectrum of compound 9c

Compound **3-Me**:

1-Me (35 mg, 0.28 mmol) was added to a solution of **9c** (50 mg, 0.06 mmol) in methanol (1 ml). The solution was stirred for 2 days at 55⁰C. The crude product was purified by precipitation with methanol and acetonitrile. The final product was washed further with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to give a pale yellow solid (52 mg 78%). ¹H NMR (400 MHz, CD₃OD) δ 4.48 (s, 6H, -NHC(O)CH₂), δ 4.38 (t, 12H, DABCO), δ 4.19 (t, 4H, -CH₂CH₂-N-CH₂CH₂-Piperazine) δ 4.17 (t, 24H, DABCO) , δ 3.68-3.58 (m, 32H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, NHCH₂CH₂CH₂O, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.44-3.36 (m, 4H, NHCH₂CH₂CH₂O), δ 3.33 (s, 9H,-CH₃), δ 1.88-1.82 (m, 8H, -OCH₂CH₂CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 164.7 (CO), 161.9, 161.2 (C₃N₃), 157.4 (CO), 70.13, 69.8 (OCH₂CH₂O), 68.2 (NHCH₂CH₂CH₂O), 62.4 ((CO)CH₂CH₂O), 29.1, 28.7, (NHCH₂CH₂CH₂O);

SI Figure 31. ¹H NMR spectrum of compound **3-Me**

SI Figure 32. ¹³C NMR spectrum of compound **3-Me**

Compound **3-Bz**:

1-Bz (44 mg, 0.27 mmol) was added to a solution of **9c** (40 mg, 0.05 mmol) in methanol (1 ml). The above solution was stirred for 2 days at 55^{0} C and 1 day at room temperature. The crude product was purified by precipitation with methanol and acetonitrile. The final product is further washed with acetonitrile, diethyl ether and ethyl acetate to give a white solid (62 mg 91%). ¹H NMR (400 MHz, CD₃OD) δ 7.68-7.60 (d, 15H, C₆H₅.), δ 4.86 (s, 6H, C₆H₅.-CH₂-), δ 4.45 (s, 6H, -NHC(O)CH₂.), δ 4.33-4.15 (t, 36H, DABCO), δ 3.98 (t, 4H, -CH₂CH₂-N-CH₂CH₂CH₂CH₂-Piperazine), δ 3.65-3.61 (m, 32H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, C(O)-NHCH₂CH₂CH₂CH₂O, -CH₂CH₂-Piperazine); δ 3.33 (m, 4H, C₃N₃-NHCH₂CH₂CH₂O) δ 1.87-1.80 (m, 8H, -OCH₂CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 165.2 (CO), 162.6, 161.9 (C₃N₃), 157.0 (CO), 133.0, 131.2, 129.4, 125.6 (C₆H₅-), 70.1 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 68.2 (NHCH₂CH₂CH₂O), 65.5 (C₆H₅-CH₂), 62.5 ((CO)CH₂Cl), 52.0, 50.6 (DABCO), 42.9, 37.9 (-CH₂CH₂-N-CH₂CH₂-), 37.1, 36.6 (NHCH₂CH₂CH₂O), 28.7, (NHCH₂CH₂CH₂O);

SI Figure 33. ¹H NMR spectrum of compound **3-Bz**

SI Figure 34. ¹³C NMR spectrum of compound **3-Bz**

Compound **3-C12**:

1-C12 (63 mg, 0.26 mmol) was added to a solution of 9c (40 mg, 0.05 mmol) in methanol (1 ml). The solution was stirred for 2 days at 55° C and 1 day at room temperature. The crude product was purified by precipitation with methanol and acetonitrile. The final product was further washed with acetonitrile, diethyl ether and ethyl acetate to give a white solid (60 mg, 76%). ¹H NMR (400 MHz, CD₃OD) δ 4.51 (s, 6H, -NHC(O)CH₂-), δ 4.47-4.16 (t, 36H, DABCO), δ 3.98 (t, 4H, -CH₂CH₂-N-CH₂CH₂CH₂-Piperazine), δ 3.68-3.63 (m, 32H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, C(O)-NHCH₂CH₂CH₂O, -CH₂CH₂-N-CH₂CH₂-Piperazine); δ 3.34 (m, 8H, C₃N₃-NHCH₂CH₂CH₂O, -CH3(CH₂)₉CH₂CH₂), δ 1.88 (m, 14H, -OCH₂CH₂CH₂, -CH3(CH₂)₉CH₂CH₂-), 1.32 (m, 54H, -CH3(CH₂)₉CH₂CH₂-), 0.93 (t, 12H, CH₃(CH₂)₉CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 166.2 (CO), 162.6, 162.0 (C₃N₃), 157.0 (CO), 70.15, 69.8 (OCH₂CH₂O), 68.2 (NHCH₂CH₂O), 64.9 ((CO)CH₂Cl), 62.5 (C₁₂H₂₅) 52.0, 50.8 (DABCO), 42.9, 37.9 (-**C**H₂**C**H₂-**N**-**C**H₂**C**H₂-), 36.7 $(NHCH_2CH_2CH_2O),$ 31.6 (CH₃(CH₂)₉CH₂CH₂-),29.3, 29.0 (NHCH₂CH₂CH₂O), 25.8, 22.3, 21.8 (-CH₃(CH₂)₉CH₂CH₂), 13.0 (CH₃(CH₂)₉CH₂CH₂);

SI Figure 35. ¹H NMR spectrum of compound **3-C12**

SI Figure 36. ¹³C NMR spectrum of compound **3-C12**

Compound 10a:

A solution of 7 (1.03 g, 1.37 mmol), piperazine (65 mg, 0.75 mmol) and DIPEA (710 mg, 5.5 mmol) was dissolved in 7 ml of 4:1 mixture of THF and methanol. This solution was irradiated in microwave at 95[°]C for 30 min. Then the solvent was evaporated under vacuum. The residue was dissolved in ethyl acetate and extracted with 1M HCl and dried over MgSO4, filtered, and then evaporated under vacuum to yield a clear oil (785 mg, 68%). ¹H NMR (400 MHz, CD₃OD) δ 3.84 8H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.65-3.58 (br, m. 48H. (t, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.51 (t, 8H, -OCH₂CH₂CH₂NH), δ 3.13 (m, 8H -OCH₂CH₂CH₂NH-), 1.86-1.73 (m, 16H, OCH₂CH₂CH₂-); 1.44 (s, 36H, C(CH₃)₃); ¹³C NMR (100 MHz, CD₃OD) δ 165.8 (CO), 156.09 (C₃N₃), 78.8 C(CH₃)₃), 70.5, 70.1 (OCH₂CH₂O), 69.5 (CH₂OCH₂CH₂OCH₂), 53.44 (NHCH₂CH₂CH₂O), 43.09 (-CH₂CH₂-N-CH₂CH₂-), 38.4, 38.2 (NHCH₂CH₂CH₂O), 29.6 (NHCH₂CH₂CH₂O), 28.4 (C(CH₃)₃); MS (ESI-TOF) calcd for C₇₀H₁₃₂N₁₆O₂₀, 1517.89, found 1517.99, 759.51.

SI Figure 37. ¹H NMR spectrum of compound **10a**

SI Figure 38. ¹³C NMR spectrum of compound **10a**

SI Figure 39. Mass spectrum of compound 10a

Compound 10c:

Chloroacetyl chloride (0.352 ml, 0.45 mmol) was added drop wise to the solution of **10b** compound (540 mg, 0.29 mmol) in dichloromethane (6 ml) at 0°C and was stirred for 2 hrs. Then the solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and then evaporated under vacuum. The crude was purified using automated chromatography to yield a clear oil (446 mg 69 %). ¹H NMR (400 MHz, CDCl₃) δ 4.11 (s, 8H, -NHC(O)CH₂Cl), δ 4.06 (t, 8H, -CH₂CH₂-N-CH₂CH₂-Piperazine) δ 3.95 (t, 16H, OCH₂CH₂OCH₂), δ 3.65 (t, 32H, OCH₂CH₂O), δ 3.57 (m, 8H -OCH₂CH₂CH₂NH), δ 3.50 (m, 8H -OCH₂CH₂CH₂NH-), 1.89-1.84 (m, 16H, -OCH₂CH₂CH₂NH); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 161.9 (C₃N₃), 155.14, (CO), 70.49 (OCH₂CH₂O), 68.37 (OCH₂CH₂OCH₂), 43.4 (NHCH₂CH₂CH₂O), 42.7 (-CH₂CH₂-N-CH₂CH₂-Piperazine), 38.4, 38.1 (NHCH₂CH₂CH₂O), 28.6 (NHCH₂CH₂CH₂O); MS (ESI-TOF) calcd for C₅₈H₁₀₄Cl₄N₁₆O₁₆, 1423.36, found 1423.692, 712.347.

SI Figure 40. ¹H NMR spectrum of compound **10c**

SI Figure 41. ¹³C NMR spectrum of compound **10c**

SI Figure 42. Mass spectrum of compound **10c**

Compound 4-Me

1-Me (31 mg, 0.24 mmol) was added to a solution of **10c** (50 mg, 0.04 mmol) in methanol (1 ml). The above solution was stirred for 2 days at 55^{0} C. The crude product was purified by precipitation with methanol and acetonitrile. The final product was washed further with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to give a pale yellow solid (60 mg 73%). ¹H NMR (400 MHz, CD₃OD) δ 4.50 (s, 8H, -NHC(O)CH₂.), δ 4.39-4.19 (t, 48H, DABCO), δ 4.05 (t, 8H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.68-3.57 (t, 56H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, C₃N₃-NHCH₂CH₂CH₂OL), δ 3.46 (s, 12H, -CH₃), δ 3.36 (t, 8H, NHCH₂CH₂CH₂OL), δ 1.92-1.82 (m, 8H, -OCH₂CH₂CH₂OL); ¹³C NMR (100 MHz, CD₃OD) δ 161.9 (C₃N₃), 154.8 (CO), 70.1, 69.8 (OCH₂CH₂OL), 68.2 (NHCH₂CH₂CH₂OL), 62.5 ((CO)CH₂Cl), 53.0, 52.0 (DABCO), 51.2 (-CCH₃), 43.4, (-CH₂CH₂-N-CH₂CH₂-), 38.1, 36.7 (NHCH₂CH₂CH₂OL), 28.7, (NHCH₂CH₂CH₂OL);

SI Figure 43. ¹H NMR spectrum of compound **4-Me**

SI Figure 44. ¹³C NMR spectrum of compound **4-Me**

Compound **4-Bz**:

1-Bz (65 mg, 0.32 mmol) was added to a solution of 10c (75mg, 0.05 mmol) in methanol (1 ml). The solution was stirred for 2 days at 55^oC. The crude product was purified by precipitation with methanol and acetonitrile. The final product was washed further with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to yield a white solid (82 mg, 79%). ¹H NMR (400 MHz, CD₃OD) δ 7.64-7.62 (d, 20H, C₆H₅₋), δ 4.89 (s, 8H, C₆H₅-CH₂₋), δ 4.42 (s, 8H, -NHC(O)CH₂₋), δ 4.32-4.10 (t, 48H, DABCO), δ 4.00 (t, 8H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.66-3.54 (t, $CH_2OCH_2CH_2OCH_2CH_2OCH_2$, C_3N_3 -NHCH₂CH₂CH₂O), δ 3.36 56H. 8H. (t. NHCH₂CH₂CH₂O), δ 1.81-1.80 (m, 8H, -OCH₂CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 161.9, (C₃N₃), 155.0 (CO), 132.9, 131.2, 129.4, 125.5, (C₆H₅-), 70.1, 69.83 (OCH₂CH₂O), 68.2 (NHCH₂CH₂CH₂O), 62.5 ((CO)CH₂Cl)), 52.0 (C₆H₅-CH₂), 51.4, 50.6 (DABCO), 44.5, 43.3 (-CH₂CH₂-N-CH₂CH₂-), 38.1, 36.6 (NHCH₂CH₂CH₂O), 28.7, (NHCH₂CH₂CH₂O);

SI Figure 45. ¹H NMR spectrum of compound **4-Bz**

SI Figure 46. ¹³C NMR spectrum of compound **4-Bz**

Compound **4-C12**:

1-C12 (89 mg, 0.32 mmol) was added to a solution of 10c (75 mg, 0.05 mmol) in methanol (1 ml). The above solution was stirred for 2 days at 55°C. The crude product was purified by precipitation with methanol and acetonitrile. The final product was washed further with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to yield a white solid (93 mg, 79%). ¹H NMR (400 MHz, CD₃OD) δ 4.50 (s, 8H, -NHC(O)CH₂-), δ 4.38-4.13 (t, 48H, DABCO), δ 4.04 (t, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.67-3.56 64H, 8H, (t, CH₂OCH₂CH₂OCH₂CH₂OCH₂, C₃N₃-NHCH₂CH₂CH₂O, -CH₃(CH₂)₉CH₂CH₂-), δ 3.33 (t, 8H, NHCH₂CH₂CH₂O), δ 1.92-1.82 (m, 24H, -OCH₂CH₂CH₂, -CH3(CH₂)₉CH₂CH₂), 1.44-1.31 (m, 72H, -(CH3(CH₂)₉CH₂CH₂-), 0.91 (t, 12H, CH₃(CH₂)₉CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 162.0 (C₃N₃), 154.8 (CO), 70.1, 69.8 (OCH₂CH₂O), 68.2 (NHCH₂CH₂CH₂O), 64.9 ((CO)CH₂Cl), 62.4 (C₁₂H₂₅) 52.0, 50.8 (DABCO), 43.3, 42.0 (-CH₂CH₂-N-CH₂CH₂-), 38.1 (NHCH₂CH₂CH₂O), 36.6 (NHCH₂CH₂CH₂O), 31.6, 29.3, 28.8 (CH3(CH₂)₉CH₂CH₂-), 25.7, 22.3 (-CH3(CH₂)₉CH₂CH₂), 13.0 (CH₃(CH₂)₉CH₂CH₂);

SI Figure 47. ¹H NMR spectrum of compound 4-C12

73

SI Figure 48. ¹³C NMR spectrum of compound **4-C12**

Compound 11a:

A solution of **7** (750 mg, 0.23 mmol) with 1- tert-butoxycarbonyl piperazine (778 mg, 1.03 mmol) and DIPEA (0.1789 ml, 1.03 mmol) in 20 ml of acetonitrile was stirred for 2 minutes. Then, the solution was irradiated in the microwave at 85°C for 60 min of stirring. The solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and then evaporated under vacuum. The crude product was purified using automated chromatography to yield a clear oil (338 mg, 91%). ¹H NMR (400 MHz, CD₃OD) δ 3.80 (t, 24H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.65-3.51 (br, m, 72H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.44 (m, 12H -OCH₂CH₂CH₂NH), δ 3.13 (m, 12H - OCH₂CH₂CH₂NH-), 1.86-1.72 (m, 24H, OCH₂CH₂CH₂-); 1.44 (s, 54H, C(CH₃)₃); ¹³C NMR (100 MHz, CD₃OD) δ 165.8, 165.3, 164.9 (C₃N₃), 157.0 (CO), 78.6 C(CH₃)₃), 70.1 (OCH₂CH₂O), 69.8 (OCH₂CH₂O), 68.8 (NHCH₂CH₂CH₂O), 68.5 (NHCH₂CH₂CH₂O), 42.9 (-CH₂CH₂O), 69.8 (OCH₂CH₂O), 68.8 (NHCH₂CH₂CH₂O), 68.5 (NHCH₂CH₂CH₂O), 27.5 (C(CH₃)₃); MS (ESI-TOF) calcd for C₁₁₄H₂₁₀N₃₀O₃₀, 2481.07, found 2480.8115 (M)⁺.

SI Figure 50. ¹³C NMR spectrum of compound **11a**

Compound **11c**:

Chloroacetyl chloride (0.15ml, 1.9mmol) was added drop wise to the solution of **11b** (540mg, 0.29mmol) and DIPEA (0.303ml, 1.74mmol) in dichloromethane (5ml) at 0°C. The above solution was stirred for 2 hrs at room temperature. Then the solvent was evaporated under vacuum. The residue was dissolved in dichloromethane and extracted with brine solution and dried over MgSO4, filtered, and then evaporated under vacuum. The crude product was purified using automated chromatography to yield a clear oil (120 mg 18%). ¹H NMR (400 MHz, CD₃OD) δ 4.06 (s, 12H, -NHC(O)CH₂Cl), δ 3.99 (t, 12H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.67-3.62 (br, m, 72H, CH₂OCH₂CH₂OCH₂CH₂OCH₂), δ 3.55 (m, 12H -OCH₂CH₂CH₂NH), δ 3.36 (m, 12H -OCH₂CH₂CH₂NH-), δ 3.32 (t, 12H, -CH₂CH₂-N-CH₂CH₂-Piperazine), 1.92-1.79 (m, 24H, OCH₂CH₂CH₂-); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 162.0 (C₃N₃), 154.7 (CO), 70.1 (OCH₂CH₂O), 69.9 (OCH₂CH₂O), 68.6 (-NHCH₂CH₂CH₂O-), 68.5 (NHCH₂CH₂CH₂O), 28.8, 28.6 (-NHCH₂CH₂CH₂O-); MS (ESI-TOF) calcd for C₉₆H₁₆₈N₃₀O₂₄, 2339.27, found 2339.344 (M)⁺.

SI Figure 53. ¹³C NMR spectrum of compound **11c**

SI Figure 54. Mass spectrum of compound **11c**

Compound 6-Me

1-Me (20 mg, 0.154 mmol) was added to a solution of **11c** (40 mg, 0.018 mmol) in methanol (0.4 ml). The above solution was stirred for 5 days at room temperature. The crude product was purified by precipitation with methanol and acetonitrile. The final product is further washed with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to yield a pale yellow solid (40.05 mg, 77%). ¹H NMR (400 MHz, CD₃OD) δ 4.49 (s, 12H, -NHC(O)CH₂-), δ 4.38-4.18 (t, 72H, DABCO), δ 3.97-3.92 (t, 24H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.69-3.63 (t, 84H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, C₃N₃-NHCH₂CH₂CH₂OL), δ 3.56 (s, 18H, -CH₃), δ 3.35 (t, 12H, NHCH₂CH₂CH₂OL), δ 1.92-1.82 (m, 24H, -OCH₂CH₂CH₂OL), δ 9.8 (OCH₂CH₂OL) δ 165.3, 161.9 (C₃N₃), 155.4 (CO), 70.1 (OCH₂CH₂OL), 69.8 (OCH₂CH₂OL), 68.2 (NHCH₂CH₂CH₂OL), 62.5 ((CO)CH₂Cl), 53.8, 52.0 (DABCO), 44.7 (-CH₃), 43.8, 42.7 (-CH₂CH₂-N-CH₂CH₂-), 38.1, 36.7 (NHCH₂CH₂CH₂OL), 28.7, (NHCH₂CH₂CH₂OL);

SI Figure 55. ¹H NMR spectrum of compound **6-Me**

SI Figure 56. ¹³C NMR spectrum of compound **6-Me**

Compound **6-Bz**

1-Bz (24 mg, 0.115 mmol) was added to a solution of **11c** (30 mg, 0.013 mmol) in methanol (0.4 ml). The above solution was stirred for 5 days at 55^{0} C. The crude product was purified by precipitation with methanol and acetonitrile. The final product was washed further with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to give a white solid (10.8 mg 25%). ¹H NMR (400 MHz, CD₃OD) δ 7.62 (d, 30H, C₆H₅.), δ 4.92 (s, 12H, C₆H₅.CH₂.), δ 4.44 (s, 12H, -NHC(O)CH₂.), δ 4.33-4.13 (t, 72H, DABCO), δ 3.95 (t, 12H, -CH₂CH₂-N-CH₂CH₂-N, δ 3.67-3.55 (t, 96H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, -NHCH₂CH₂CH₂O-, -CH₂CH₂-N-CH₂CH₂-), δ 3.32 (t, 12H, -NHCH₂CH₂CH₂O-), δ 1.92-1.80 (m, 24H, -OCH₂CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 165.9, (C₃N₃), 158.6 (CO), 132.9, 131.2, 129.4, 125.5 (C₆H₅-), 70.1, 69.8 (OCH₂CH₂O), 68.2 (C₆H₅-CH₂), 62.5 ((CO)CH₂Cl), 52.0, 50.6 (DABCO), 44.3, 43.0 (-CH₂CH₂-N-CH₂CH₂-), 38.1, 37.1 (NHCH₂CH₂CH₂O), 28.7, (NHCH₂CH₂CH₂O).

SI Figure 57. ¹H NMR spectrum of compound 6-Bz

87

SI Figure 58. ¹³C NMR spectrum of compound **6-Bz**

Compound 6-C12

1-C12 (33mg, 0.115mmol) was added to a solution of **11c** (30 mg, 0.013 mmol) in methanol (0.4 ml). The above solution was stirred for 5 days at 55^{0} C. The crude product was purified by precipitation with methanol and acetonitrile. The final product is further washed with acetonitrile, diethyl ether, ethyl acetate and tetrahydrofuran to yield a white solid (44.6 mg, 90%). ¹H NMR (400 MHz, CD₃OD) δ 4.51 (s, 12H, -NHC(O)CH₂.), δ 4.39-4.15 (t, 72H, DABCO), δ 3.95 (t, 24H, -CH₂CH₂-N-CH₂CH₂-Piperazine), δ 3.64-3.57 (t, 96H, CH₂OCH₂CH₂OCH₂CH₂OCH₂, C₃N₃-NHCH₂CH₂CH₂O, -CH3(CH₂)₉CH₂CH₂-), δ 3.35 (t, 12H, NHCH₂CH₂CH₂OCH₂, δ 1.92-1.82 (m, 36H, -OCH₂CH₂CH₂, -CH3(CH₂)₉CH₂CH₂), 1.43-1.31 (m, 108H, CH3(CH₂)₉CH₂CH₂-), 0.91 (t, 18H, CH₃(CH₂)₉CH₂CH₂); ¹³C NMR (100 MHz, CD₃OD) δ 161.7, 161.7 (C₃N₃), 154.7 (CO), 70.1, 69.8 (OCH₂CH₂O), 68.3 (NHCH₂CH₂CH₂O), 64.9 ((CO)CH₂Cl), 62.5 (C₁₂H₂₅) 52.0, 50.9 (DABCO), 43.7, 43.0 (-CH₂CH₂-N-CH₂CH₂-), 38.2, 36.7 (NHCH₂CH₂CH₂O), 31.6 (NHCH₂CH₂CH₂O), 29.3, 29.0, 28.8 (CH₃(CH₂)₉CH₂CH₂-), 25.8 (CH₃(CH₂)₉CH₂CH₂-), 21.8 (CH₃(CH₂)₉CH₂CH₂-), 13.1 (CH₃(CH₂)₉CH₂CH₂-);

SI Figure 59. ¹H NMR spectrum of compound **6-C12**

SI Figure 60. ¹³C NMR spectrum of compound **6-C12**

Graphical representation of MIC values of all compounds:

MIC values and optical density (OD) values of all compounds are reported against three strains of bacteria. Error bars represent standard error of the mean. Standard error of the mean was not calculated for any 1-X compound, 1-(X)₂ compounds at 6.25 and 12.5 (μ g/ mL) or 6-X compounds at 6.25 and 12.5 (μ g/ mL). OD readings of these compounds followed clear patterns of activity. E.g. if 6-X did not show activity at 25 (μ g/ mL) it was not assessed at lower concentrations.

