Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

## Supplementary Information for

Combined Photophysical, NMR and Theoretical (DFT) Study on the Interaction of a Multi Component System in Absence and Presence of Different Biologically and Environmentally Important ions

Abhas Kumar Bhoi, Prabhat Kumar Sahu, Gaurav Jha, Anoop N. and Moloy Sarkar\*

School of Chemical Sciences,

National Institute of Science Education and Research

Bhubaneswar 751005, India

\*To whom correspondence should be addressed. Email: moloysarkar@gmail.com. Phone:

+91-674-2304037 Fax: +91-674-2302436.



Figure S1. Fluorescence Excitation Spectra of DANSn2, in Acetonitrile, at  $\lambda_{emi.}$ =538 nm



**Figure S2.** Normalized fluorescence emission spectra of DANSn2 upon increasing addition of Fluoride. Inset shows the small change in the position of emission maxima, and the arrow depicts the increasing fluoride concentration as well as the blue shift.



Figure S3. Change of quantum yield of DANSn2 with the concentration of fluoride ion.



**Figure S4**. Variation of Fo/F of DANSn2 with the concentration of fluoride ion. F and  $F_0$  are fluorescence intensities of DANSn2 with and without addition of fluoride ion.



Figure S5. Benesi-Hildebrand plot for determination of binding constant of **DANSn2** (1.0  $\times$  10<sup>-5</sup> M) with fluoride ion from steady state emission data.



**Figure S6.** Fluorescence response of **DANSn2** in absence and presence of different metal ions.  $\lambda_{exc.}$ =445 nm. Concentration of probe ~ 1.0 ×10<sup>-5</sup> M and metal ions ~ 1.0×10<sup>-3</sup>M.



**Figure S7.** Jobs plot for the complexation of the DANSn2 with  $Zn^{2+}$  ions in ACN.  $\lambda_{exc.} = 338$  nm.



**Figure S8.** Benesi-Hildebrand plot for determination of binding constant of **DANSn2**  $(1.0 \times 10^{-5} \text{ M})$  with copper ion from steady state emission data.



**Figure S9**. Benesi-Hildebrand plot for determination of binding constant of **DANSn2**  $(1.0 \times 10^{-5} \text{ M})$  with copper ion from steady state absorption data.



**Figure S10.** Zoomed <sup>1</sup>H NMR spectra of DANSn2 in DMSO-d<sub>6</sub> in presence of (a) 0 eq., (b) 0.2 eq., (c) 0.5 eq., (d) 1.12 eq. of Zinc(II) perchlorate.



**Figure S11.** Change in emission profile of DANSn2 in Acetonitrile, upon addition of Zinc salt in presence of fluoride salt to evaluate the cooperative effect in ion binding.

**Table S1**. Binding Constants of DANSn2 with  $Zn^{2+}$  in the presence of  $F^{-}$ .

| Complexes                                    | Binding Constant (10 <sup>-4</sup> ) |
|----------------------------------------------|--------------------------------------|
| $DANSn2 + Zn^{2+}$                           | $0.652 \text{ M}^{-2}$               |
| $DANSn2 + Zn^{2+}$ (in presence of $F^{-}$ ) | 0.061 M <sup>-2</sup>                |

| Center Number | Atomic Number | Coordinates(Angstroms) |           |           |
|---------------|---------------|------------------------|-----------|-----------|
|               |               | Х                      | Y         | Z         |
| 1             | 16            | 2.144270               | -1.603074 | -0.702735 |
| 2             | 8             | 2.898375               | -2.64063  | -0.01398  |
| 3             | 8             | 2.1534                 | -1.50579  | -2.15398  |
| 4             | 7             | -4.07678               | 0.051844  | 0.385017  |
| 5             | 7             | 2.681125               | -0.15059  | -0.11566  |
| 6             | 1             | 2.118141               | 0.628387  | -0.48394  |
| 7             | 7             | 1.542065               | 2.487055  | 0.112497  |
| 8             | 6             | -3.95088               | 0.679565  | 1.700044  |
| 9             | 1             | -3.06505               | 0.309882  | 2.218832  |
| 10            | 1             | -4.8332                | 0.440206  | 2.300819  |
| 11            | 1             | -3.87001               | 1.776664  | 1.613934  |
| 12            | 6             | -2.86858               | 0.050085  | -0.35691  |
| 13            | 6             | -1.83048               | -0.8575   | 0.050983  |
| 14            | 6             | -0.56562               | -0.82472  | -0.60918  |
| 15            | 6             | 0.44625                | -1.71481  | -0.12333  |
| 16            | 6             | 2.81186                | -0.05502  | 1.345929  |
| 17            | 1             | 3.627733               | -0.71359  | 1.651417  |
| 18            | 1             | 1.89485                | -0.3954   | 1.855635  |
| 19            | 6             | 3.097889               | 1.388655  | 1.747705  |
| 20            | 1             | 3.337253               | 1.402728  | 2.81657   |
| 21            | 1             | 3.990338               | 1.745378  | 1.222315  |
| 22            | 6             | 1.90809                | 2.321993  | 1.522197  |
| 23            | 1             | 1.0377                 | 1.89551   | 2.036884  |
| 24            | 1             | 2.10645                | 3.307941  | 1.984576  |
| 25            | 6             | 0.197372               | 3.035943  | -0.00022  |
| 26            | 1             | -0.52701               | 2.336873  | 0.430284  |
| 27            | 1             | -0.05589               | 3.172701  | -1.05434  |
| 28            | 1             | 0.105824               | 4.011088  | 0.512477  |
| 29            | 6             | 2.49831                | 3.329897  | -0.59554  |
| 30            | 1             | 2.551973               | 4.344937  | -0.1615   |
| 31            | 1             | 2.200939               | 3.413645  | -1.64407  |
| 32            | 1             | 3.495689               | 2.884892  | -0.56625  |
| 33            | 6             | -2.06854               | -1.82541  | 1.064755  |
| 34            | 1             | -3.06419               | -1.88653  | 1.491194  |
| 35            | 6             | -1.08394               | -2.69189  | 1.464118  |
| 36            | 1             | -1.2841                | -3.4396   | 2.224396  |
| 37            | 6             | 0.202927               | -2.61346  | 0.885059  |
| 38            | 1             | 1.007104               | -3.26283  | 1.215556  |
| 39            | 6             | -2.66299               | 0.858394  | -1.45445  |
| 40            | 1             | -3.44492               | 1.52803   | -1.79532  |
| 41            | 6             | -1.4287                | 0.835869  | -2.1415   |
| 42            | 1             | -1.29837               | 1.473993  | -3.0108   |
| 43            | 6             | -0.38907               | 0.046835  | -1.72183  |
| 44            | 1             | 0.544952               | 0.040941  | -2.27008  |
| 45            | 6             | -5.24998               | 0.548661  | -0.31257  |
| 46            | 1             | -5.23397               | 1.642471  | -0.46045  |
| 47            | 1             | -6.13528               | 0.304259  | 0.280607  |
| 48            | 1             | -5.33793               | 0.061189  | -1.28587  |

**Table S2**. Cartesian coordinates of the optimized structure of DANSn2.

| Center Number | Atomic Number | Coordinates(Angstroms) |           |           |
|---------------|---------------|------------------------|-----------|-----------|
|               |               | Х                      | Y         | Z         |
| 1             | 16            | 1.435488               | 0.383797  | -0.692482 |
| 2             | 8             | 1.220706               | 0.848090  | -2.047125 |
| 3             | 8             | 1.790950               | 1.421625  | 0.361323  |
| 4             | 7             | -5.003300              | 0.364000  | 0.642356  |
| 5             | 7             | 2.591624               | -0.686600 | -0.430413 |
| 6             | 6             | -4.988250              | 0.067546  | 2.128038  |
| 7             | 1             | -4.097470              | -0.482435 | 2.416484  |
| 8             | 1             | -5.881130              | -0.504508 | 2.383620  |
| 9             | 1             | -5.009940              | 1.022101  | 2.662997  |
| 10            | 6             | -3.765170              | 0.832793  | 0.136230  |
| 11            | 6             | -2.573570              | -0.009300 | 0.202594  |
| 12            | 6             | -1.319270              | 0.544531  | -0.211434 |
| 13            | 6             | -0.157200              | -0.274253 | -0.138808 |
| 14            | 6             | 3.260894               | -1.374108 | -1.558280 |
| 15            | 1             | 3.325898               | -0.717989 | -2.434014 |
| 16            | 1             | 2 672499               | -2.255589 | -1 835852 |
| 17            | 6             | 4 650752               | -1 830137 | -1 112581 |
| 18            | 1             | 4 566533               | -2 557154 | -0 299112 |
| 10            | 1             | 5 093267               | -2 373278 | -1 953489 |
| 20            | 6             | -2 607330              | -1 356547 | 0 599908  |
| 20            | 1             | -3 539060              | -1.330347 | 0.377700  |
| 21            | 6             | -1.451010              | -2 133035 | 0.653529  |
| 22            | 1             | 1 511/00               | 3 168227  | 0.033323  |
| 23            | 6             | -1.311490              | -5.106227 | 0.974838  |
| 24            | 1             | -0.213810              | -1.300040 | 0.298770  |
| 25            | 6             | 2 676900               | -2.101317 | 0.330474  |
| 20            | 1             | -3.070800              | 2.119012  | -0.439177 |
| 27            | 6             | -4.332330              | 2.730719  | -0.322333 |
| 20            | 1             | -2.437110              | 2.032820  | -0.634411 |
| 29            | 6             | -2.398280              | 1 971714  | -1.223119 |
| 21            | 1             | -1.273890              | 2 216147  | -0.710398 |
| 22            | 6             | -0.536120              | 2.310147  | -1.028290 |
| 32            | 1             | -0.195450              | 2 190096  | 0.006248  |
| 33            | 1             | -0.123190              | 2.160960  | 0.900348  |
| 25            | 1             | -7.081930              | 1 417022  | 0.730009  |
| 33            | 1             | -0.299620              | 0.708652  | -0.700324 |
| 30            | 0             | 5.051500               | -0.708032 | -0.739449 |
| 29            | 1             | 0.033780               | -1.108002 | -0.703030 |
| 38            | 1 7           | 5.388417               | 0.063133  | -1.310090 |
| 39            | 1             | 5.430125               | -0.052585 | 0.570039  |
| 40            | 0             | 0.370704               | 1.100131  | 0.098855  |
| 41            | 1             | 0.242390               | 1.388938  | 1.00/003  |
| 42            | 1             | /.410400               | 0./40945  | 0.033234  |
| 43            | 1             | 6.202978               | 1.815112  | -0.109142 |
| 44            | 0             | 5.0/2/25               | -1.004430 | 1.090011  |
| 45            | 1             | 0.0/0/91               | -1.446106 | 1.596837  |
| 46            |               | 5.620023               | -0.468574 | 2.646056  |
| 4/            |               | 4.925577               | -1./98/21 | 1.68/434  |
| 48            | 29            | 5.615309               | 0.659351  | 0.6599997 |
| 49            | 29            | -5.564770              | -1.341/46 | -0.459804 |

**Table S3.** Cartesian coordinates of the optimized structure of the DANSn2 $\cdots$ Cu<sup>2+</sup> complex.

| Center Number | Atomic Number | Coordinates(Angstroms) |          |          |
|---------------|---------------|------------------------|----------|----------|
|               |               | Х                      | Y        | Z        |
| 1             | 16            | 0.886431               | 1.258176 | 1.125757 |
| 2             | 8             | 1.468032               | 2.570826 | 0.78898  |
| 3             | 8             | 0.717318               | 0.921313 | 2.542834 |
| 4             | 7             | -5.11765               | -0.61949 | -0.77733 |
| 5             | 7             | 1.611705               | 0.061748 | 0.391692 |
| 6             | 1             | 1.597671               | -1.27192 | 0.85182  |
| 7             | 7             | 5.74106                | -0.51759 | -0.57348 |
| 8             | 6             | -4.97363               | -0.72594 | -2.22568 |
| 9             | 1             | -4.154                 | -0.09354 | -2.57113 |
| 10            | 1             | -5.90029               | -0.39697 | -2.70938 |
| 11            | 1             | -4.76304               | -1.76459 | -2.53771 |
| 12            | 6             | -3.87316               | -0.75527 | -0.0865  |
| 13            | 6             | -2.9724                | 0.361311 | -0.10279 |
| 14            | 6             | -1.68957               | 0.236604 | 0.511004 |
| 15            | 6             | -0.79744               | 1.353783 | 0.439309 |
| 16            | 6             | 2.006558               | 0.26899  | -0.99408 |
| 17            | 1             | 1.478409               | 1.1185   | -1.45042 |
| 18            | 1             | 1.720165               | -0.62963 | -1.56124 |
| 19            | 6             | 3.515993               | 0.492563 | -1.13607 |
| 20            | 1             | 3.744355               | 0.662361 | -2.19747 |
| 21            | 1             | 3.794541               | 1.392432 | -0.57588 |
| 22            | 6             | 4.289684               | -0.70232 | -0.59363 |
| 23            | 1             | 3.956146               | -0.88199 | 0.432887 |
| 24            | 1             | 4.025485               | -1.6111  | -1.17652 |
| 25            | 6             | 6.372803               | -1.60714 | 0.145552 |
| 26            | 1             | 5.964617               | -1.66562 | 1.157793 |
| 27            | 1             | 7.452415               | -1.43345 | 0.21282  |
| 28            | 1             | 6.209021               | -2.58739 | -0.34623 |
| 29            | 6             | 6.29676                | -0.41154 | -1.90712 |
| 30            | 1             | 6.073351               | -1.30568 | -2.52618 |
| 31            | 1             | 7.384789               | -0.30261 | -1.84495 |
| 32            | 1             | 5.898488               | 0.46724  | -2.41928 |
| 33            | 6             | -3.34568               | 1.596764 | -0.69948 |
| 34            | 1             | -4.3489                | 1.695861 | -1.10122 |
| 35            | 6             | -2.46724               | 2.649366 | -0.73663 |
| 36            | 1             | -2.76492               | 3.592071 | -1.18764 |
| 37            | 6             | -1.17311               | 2.520447 | -0.17849 |
| 38            | 1             | -0.46204               | 3.339523 | -0.21068 |
| 39            | 6             | -3.51422               | -1.90623 | 0.577732 |
| 40            | 1             | -4.18878               | -2.75649 | 0.602515 |
| 41            | 6             | -2.25572               | -2.00626 | 1.21729  |
| 42            | 1             | -1.98796               | -2.92624 | 1.727566 |
| 43            | 6             | -1.35319               | -0.97599 | 1.178138 |
| 44            | 1             | -0.39035               | -1.08493 | 1.660296 |
| 45            | 6             | -6.19143               | -1.4708  | -0.30686 |
| 46            | 1             | -6.05302               | -2.53543 | -0.5713  |
| 47            | 1             | -7.13011               | -1.13578 | -0.76082 |
| 48            | 1             | -6.27844               | -1.39031 | 0.779336 |
| 49            | 9             | 1.617869               | -2.28279 | 1.084434 |

**Table S4**. Cartesian coordinates of the optimized structure of the DANSn2 $\cdots$  F complex.

## **Fluorescence Microscopy Studies.**

Fluorescence microscopy studies have been performed to evaluate the utility of the present DANSn2 system as an imaging probe in live cells. Fluorescence images were taken after incubation with increasing concentration of DANSn2 (0 to 40  $\mu$ M) to the tetrahymena cells for 2 h. It can be seen that the fluorescence images display blue emission due to presence of a slightly acidic medium inside the cell. The results shows that DANSn2 is cell-permeable and may be used for live cell imaging studies.



**Figure S12**. Fluorescence microscopy images of Tetrahymena cells (1) DIC image (2) after incubation with  $0\mu$ M DNASn2 (3)  $10\mu$ M DNASn2 (4)  $10 \mu$ M DANSn2<sup>+</sup> $10\mu$ M Cu2<sup>+</sup>, for 2 hours.

We have also carried out the toxicity studies on the present system by employing the same cells used for imaging(Figure S11). The growth curve of tetrahymena cell was found to be similar in the presence or absence of DANSn2. Hence, DANSn2 is non-toxic under the present experimental condition.



**Figure S13.** Growth curve of Tetrahymena: Tetrahymena cells were grown in presence of 0  $\mu$ M DANSn2 and 10  $\mu$ M DANSn2. DANSn2 was added when cells density reached 1  $\times$  10<sup>5</sup> /ml. The cell numbers were counted every 2 hours and the numbers of cells were plotted against time in hours.