Graphene and Graphene Oxide Double Decorated SnO₂ Nanofibers with Enhanced Humidity Sensing Performance

Jing Xu¹, Shaozhen Gu², Bingan Lu^{2*}

¹College of Material science and engineering, Hunan University, Changsha, 410082,

China.

²School of Physics and Electronics, Hunan University, Changsha, 410082, China.

Figure S1

Figure S1 (A) SEM images of graphene. (B) Raman spectra of graphene.

Fig S2

Figure S2 shows the typical FTIR spectrum of GO sheets. The spectrum presence of different type of oxygen functionalities in graphene oxide was confirmed at 3400 cm⁻¹

(O-H stretching vibrations), at 1720 and 1576 cm⁻¹ (stretching vibrations from C–OH vibrations from COOH and H₂O), and at 1060 cm⁻¹ (C-O stretching vibrations). The peaks at \sim 2336 cm⁻¹ is due to atmospheric CO₂.

Fig S3

Figure S3 The XRD patterns of pure SnO_2 and $SnO_2@G$ composites. For SnO_2 nanofibers, all the peaks can be readily indexed to the rutile phase SnO_2 (JCPDS No. 41-1445). Compared to pure SnO_2 nanofibers, in the XRD pattern of $SnO_2@G$ nanofibers, the appearance of a broadened peak at 24° (inset) corresponding to the (002) of graphite indicates the existence of graphene.

Figure S4

Figure S4 (A) SEM images of as-spun SnO₂@G nanofibers, and (B) SEM images of SnO₂@G nanofibers after annealing.

Figure S5 (A) Nitrogen adsorption/desorption isotherms of the $SnO_2@G-GO$ nanocomposite. The specific surface area of the $SnO_2@G-GO$ nanocomposite is 193.62 m² g⁻¹. (B) Nitrogen adsorption/desorption isotherms of the $SnO_2@G$ nanofibers. The specific surface area of the $SnO_2@G$ nanofibers is 29.34 m² g⁻¹. The pore diameter is about 3.8nm.

Fig S6

Fig S5

Figure S6 SEM images of $SnO_2@G-GO$. The $SnO_2@G$ hybrid nanofibers were apparently wrapped by the well-stretched GO.

Figure S7

Figure S7 Raman spectra of (A) SnO₂@G nanofibers, and (B) SnO₂@G-GO nanocomposite.

Figure 8

Figure S8 XPS spectra of the $SnO_2@G-GO$ nanocomposites (A); insets: the Sn 3d doublet; (B) the C 1s XPS spectrum of the graphene and GO.