Supporting Information for

Temperature-Responsive Proton-Conductive Liquid Crystals

Formed by the Self-Assembly of Zwitterionic Ionic Liquids

Xinpei Gao,^a Fei Lu,^a Bin Dong,^b Tao Zhou,^a Yizhi Liu,^a Liqiang Zheng^{*a}

^a Key laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China
 ^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China

Figure S1. (a) SAXS patterns of $[C_{12}IPS][C_6H_5SO_3H]$ aqueous mixture system with increasing IL content collected at 25 °C; (b) Corresponding POM images collected at 25 °C.

Figure S2. (a) SAXS patterns of $[C_{12}IPS][CF_3SO_3H]$ aqueous mixture system with increasing IL content collected at 25 °C; (b) Corresponding POM images collected at 25 °C.

Figure S3. (a) SAXS patterns of $[C_{14}IPS][CH_3SO_3H]$ and $[C_{16}IPS][CH_3SO_3H]$ aqueous mixture systems with increasing IL content collected at 25 °C; (b) Corresponding POM images collected at 25 °C.

	Sample	ሐ	a_0	r _H	r _P	d_w	a _s
	(wt%)	Ψ_L	(nm)	(nm)	(nm)	(nm)	(nm²)
C ₁₆ IPS/CH ₃ SO ₃ H (H ₁)	70	0.3492	4.7978	1.4885		1.8209	0.6181
	80	0.3420	4.5587	1.3997		1.7594	0.6572
C ₁₄ IPS/CH ₃ SO ₃ H (Pm3n,H ₁)	70	0.3237	9.2797		1.9767		0.6162
	80	0.3148	4.1935	1.2354		1.7227	0.6573
C ₁₂ IPS/CH ₃ SO ₃ H (Pm3n,H ₁)	60	0.2588	8.0574		1.5930		0.6629
	70	0.2785	7.8690		1.5942		0.6624
	80	0.2608	3.2146	0.8619		1.4908	0.8168
C ₁₂ IPS/C ₆ H ₆ SO ₃ H (H ₁)	50	0.2144	4.9490	1.2033		2.5425	0.5851
	60	0.2602	4.3598	1.1676		2.0247	0.6030
	70	0.3060	4.0844	1.1863		1.7119	0.5935
	80	0.3530	3.9239	1.2240		1.4758	0.5752
C ₁₂ IPS/CF ₃ SO ₃ H (H ₁)	30	0.1288	6.9977	1.3184		4.3609	0.5340
	40	0.1718	5.7222	1.2453		3.2316	0.5653
	50	0.2174	5.0863	1.2450		2.5962	0.5654
	60	0.2608	4.5399	1.2173		2.1054	0.5783
	70	0.3121	4.1618	1.2208		1.7202	0.5767
	80	0.3552	3.7627	1.1774		1.4079	0.5979

Table S1. Structural parameters for the liquid crystalline phases of [C_nIPS][R-SO₃H]

aqueous mixture systems.

 φ_L is the volume fraction of the hydrophobic long alkyl chain part; a_0 is the lattice parameters of the liquid crystalline phases; r_H is the radius of cylinder unit in the hexagonal structure; r_p is the radius of the micelle unit in the Pm3n cubic structure; d_W is the thickness of the water channel of the liquid crystalline phases; a_s is the effective cross-sectional area.

Theory for calculation of structural parameters of liquid crystalline phase

The lattice parameters a_0 of the hexagonal (distance between the centers of adjacent cylinders) and Pm3n micellar cubic (cubic lattice parameter) liquid crystalline phases were obtained according to Eq. (1) and (2), respectively.^[1]

$$q_{(h,k)} = \frac{4\pi}{\sqrt{3}a_0} \cdot (h^2 + k^2 + hk)^{1/2}$$
(1)

$$q_{(h,k,l)} = \frac{2\pi}{a_0} \cdot \left(h^2 + k^2 + l^2\right)^{1/2}$$
(2)

where q(h,k) and q(h,k,l) are the scattering vectors corresponding to the scattering peaks observed in the SAXS spectra for the hexagonal and Pm3n micellar cubic phase, respectively, h, k, l are Miller indexes, and a_0 is the lattice parameter. From the results of SAXS, several structural parameters characterizing the structure of the liquid crystalline phase could be calculated as follows.

The volume fraction of the hydrophobic long alkyl chain part in [C_nIPS][R-SO₃H] aqueous mixture system φ_L is calculated by Eq. (3)^[2]:

$$\varphi_L = \frac{\frac{W_C}{\rho_C} \times \frac{V_{C,L}}{V_C}}{(\frac{W_C}{\rho_C} + \frac{W_H}{\rho_H} + \frac{W_W}{\rho_W})} = \frac{\frac{W_C}{M_C} \times V_{C,L}}{(\frac{W_C}{\rho_C} + \frac{W_H}{\rho_H} + \frac{W_W}{\rho_W})}$$
(3)

where W_C, W_H and W_w are the weight fraction of C_nIPS, R-SO₃H and water, respectively, and ρ_C , ρ_H and ρ_W are the densities of C_nIPS, R-SO₃H and water, respectively. The density of C_nIPS is obtained using a pycnometer as reported previously,^[3] and the reference solvent is ethyl acetate ($\rho = 0.8944 \ g \cdot cm^{-3}$). The densities of C₁₂IPS, C₁₄IPS, C₁₆IPS, CH₃SO₃H, C₆H₅SO₃H, CF₃SO₃H and water are 1.0227, 1.1098, 1.1595, 1.48, 1.32, 1.69 and 0.997 $g \cdot cm^{-3}$, respectively. V_C , $V_{C,L}$ and M_C are molecular volume of C_nIPS, molar volume of alkyl chain and the molecular weight of C_nIPS. $V_{C,L}$ is calculated by Eq. (4)^[4]:

$$V_{C,L} = N_A \times 10^{-21} [0.027(m-1) + 0.055]$$
(4)

where N_A is Avogadro's number and m is the number of methylene in alkyl chain.

For hexagonal liquid crystalline, the radius of cylinder unit (r_H), the thickness of the water channel (d_W) and the effective cross-sectional area (a_s) could be obtained using Eq. (5), (6) and (7), respectively.^[5]

$$r_H = a_0 \sqrt{\frac{\sqrt{3}\varphi_L}{2\pi}} \tag{5}$$

$$d_W = a_0 - 2r_H \tag{6}$$

$$a_s = \frac{2V_{C,L}}{r_H N_A} \tag{7}$$

For calculation of Pm3n micellar cubic liquid crystalline structural parameters, it is generally assume that the two kinds of micelles to be spherical with the same radius.^[6] The radius of the micelle unit (r_p) and the effective cross-sectional area (a_s) could be obtained using Eq. (8) and (9), respectively.^[6]

$$r_{P} = \frac{a_{0_{3}}}{2} \sqrt[3]{\frac{3\varphi_{L}}{4\pi}}$$

$$a_{s} = \frac{3V_{C,L}}{r_{P}N_{A}}$$
(8)
(9)

References

[1] F. Nilsson, O. Söderman, Langmuir. 1996, 12, 902.

[2] J. A. Riddick, W. B. Bunger, T. K. Sakano, in Organic Solvents, Physical

Properties and Methods of Purification, Wiley–Interscience, New York, fourth edn., **1986**, pp. 45.

[3] W. W. Russell, Ind. Eng. Chem. Anal. Ed. 1937, 9, 592.

[4] Y. Yamashita, H. Kunieda, E. Oshimura, K. Sakamoto, Langmuir. 2003,19, 4070.

[5] Y. Yamashita, H. Kunieda, E. Oshimura, K. Sakamoto, J. Colloid Interface Sci.

[6] X. Li, H. Kunieda, Langmuir. 200, 16, 10092