Supporting Information Rational Design of Polyaniline/MnO₂/Carbon Cloth Ternary Hybrids as Electrodes for Supercapacitors

Xin Zhao¹, Chaoyi Chen¹, Zilong Huang¹, Lei Jin¹, Junxian Zhang¹, Yingzhi Li¹, Lili Zhang²*, and Qinghua Zhang¹*

¹College of Material Science & Engineering, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China

² Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island 627833, Singapore

*Corresponding author. Email: <u>zhang_lili@ices.a-star.edu.sg</u>, <u>qhzhang@dhu.edu.cn</u>

Figure S1. SEM images of original CC and m-CC and their hydrophilic tests (inset shows the contact angle).

Figure S2. SEM images of m-CC after being etched in 1 M H_2SO_4 .

Figure S3. SEM images of $MnO_2@m-CC$ after being etched by 1 M H_2SO_4 .

Figure S4. TEM images of (a) MnO₂@PANI@m-CC and (b) PANI@MnO₂@m-CC

Figure S5. SEM image of the cross-section part of PANI@MnO₂@m-CC

Figure S6. Raman spectra of H_2SO_4 etched $MnO_2@m-CC$ and original $MnO_2@m-CC$

Figure S7. (a) Survey XPS spectrum of m-CC, PANI@MnO₂@m-CC, MnO₂@PANI@m-CC and N 1s spectra of (b) m-CC, (c) PANI@MnO₂@m-CC and (d) MnO₂@PANI@m-CC

Figure S9. CV curves of MnO₂@PANI@ m-CC at various scan rates.

Figure S10. Galvanostatic charge/discharge curves of (a) PANI@MnO₂@m-CC and (b) MnO₂@PANI@ m-CC at different current densities

Figure S11. Gravimetric specific capacitance vs. current densities of as-prepared samples.

Figure S12. CV curves at 20 mV/s of PANI@MnO₂@m-CC electrode at flat and bending state

Figure S13. Three-electrode electrochemical measurements of a-MEGO@m-CC: (a) CV curves at various scan rates, (b)Galvanostatic charge/discharge curves at different current densities, (c) plot of areal capacitance vs. current density and (d) Nyquist plot from EIS measurement.

Figure S14. Comparison of the CV curves of a-MEGO@m-CC and PANI@MnO₂@m-CC at different potential window in three electrode systems.

Figure S15. (a) Galvonostatic charge/discharge curves at a current density of 0.2 mA/cm2 with different potential windows, (b) polts of gravimetric specific capacitance vs. current density, (c) Nyquist plots and (d) cycling stability curves of assembled PANI@MnO₂@m-CC//a-MEGO@m-CC ASC device.

Samples (1×1 cm ²)				Mass	s (mg)			
m-CC	9.95	9.51	9.48	9.63	9.87	10.02	9.62	9.90
MnO ₂ @m-CC	10.15	9.73	9.70	9.84	-	-	-	-
PANI@m-CC	-	-	-	-	10.22	10.40	9.98	10.25
PANI@MnO2@m-CC	10.50	10.11	10.05	10.21	-	-	-	-
MnO ₂ @PANI@m-CC	-	-	-	-	10.43	10.63	10.20	10.47

 Table S1. The total mass of each samples obtained in our work.

Table S2.	Calculated area	al and gravim	etric specific	capacitance o	f a-MEGO@1	m-CC
and PAN	I@MnO ₂ @m-C	CC at different	current densi	ties in a three	electrode syst	em.

Samplas	Canacitanaa	Current density (mA/cm ²)						
Samples	Capacitance	0.2	0.4	0.6	ity (mA/cr 0.8 140 144.4 278.6 488.8	1.0	2.0	
a-MEGO@m-CC	$C_{\rm areal} ({\rm mF/cm^2})$	239.3	158.8	141.2	140	132	132.5	
(0.97 mg/cm ²)	$C_{\rm m}({\rm F/g})$	246.6	163.7	145.6	144.4	136.1	136.6	
PANI@MnO ₂ @m-	$C_{\text{areal}}(\text{mF/cm}^2)$	421.6	337.1	297	278.6	264.1	251.3	
CC (0.57 mg/cm ²)	$C_{\rm m}({\rm F/g})$	739.6	591.4	521.1	488.8	463.3	440.9	