Construction of Benzo[a]carbazole Derivatives via Diels-

Alder Reaction of Arynes with Vinylindoles

Lijun Wu,^a Hui Huang,^a Pan Dang,^a Yun liang,^{*,a} Shaofeng Pi^{*,b}

^a Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research,

Ministry of Education, Key Laboratory of the Assembly and Application of Organic

Functional Molecules, Hunan Normal University, Changsha, Hunan 410081, China;

^b Institute of Applied Chemistry, Central South University of Forestry and

Technology, Changsha 410004, China

E-mail: <u>yliang@hunnu.edu.cn</u> and <u>psfhunan@163.com</u> Fax: +86(0731)88872533

Supporting Information

1) General Information	S2
2) Synthesis of Starting Materials	S2-S3
3) Typical Procedures	S3-S4
4) Characterization Data	S4-S14
5) X-ray crystallographic studies for 3c	S14-S15
6) References	S16
7) Scanned ¹ H NMR and ¹³ C NMR Spectra of All New Compounds	S17-S40

1) General Information

NMR spectra of the products **3b-3d**, **3f-3o**, **3q-3t'** and **3v-3v'** were recorded using Bruker Avance-500 instruments, calibrated to TMS (¹H NMR spectra) and CDCl₃ (¹³C NMR spectra) as the internal reference (0.00 ppm for ¹H NMR spectra and 77.00 ppm for ¹³C NMR spectra). NMR spectra of the products **3a**, **3e**, **3p** and **3u** were recorded using Bruker Avance-500 instruments, calibrated to residual CD₂Cl₂ as the internal reference (5.32 ppm for ¹H NMR spectra and 54.00 ppm for ¹³C NMR spectra). High-resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS mass spectrometer using ESI (electrospray ionization). Melting points were measured uncorrected. Reactions were monitored by thin-layer chromatography or GC-MS analysis. Column chromatography (petroleum ether/ethyl acetate) was performed on silica gel (200-300 mesh).

2) Synthesis of Starting Materials¹⁻⁴

(i) General Procedure for the Synthesis of indole-3-carboxaldehyde derivatives¹

To a solution of phosphorus chloride oxide (7.5 mmol, 1.5 equiv) in anhydrous DMF (10.0 mL) at 0 °C under dry nitrogen atmosphere, DMF (2.0 mL) and indole derivatives **A** (5.0 mmol, 1.0 equiv) was added to the system and the resulting mixture was stirred at room temperature. After being stirred for 1h, the reaction mixture was poured into cold saturated NaHCO₃ solution (aqueous) and stirred for 30 min. The reaction mixture was extracted by EtOAc for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered, concentrated under reduced pressure and purified by silica gel flash column chromatography to provide desired products **B** in moderate to excellent yields.

(ii) General Procedure to synthesis the N-substituted indole-3-carboxaldehyde¹

N-substituted indole-3-carboxaldehyde **C** was prepared by the treatment of indole-3-carboxaldehyde **B** (5.0 mmol, 1.0 equiv) with NaH (7.5 mmol, 1.5 equiv) in CH₃CN (8.0 mL) followed by the addition of CH₃I (7.5 mmol, 1.5 equiv). After the completion of the reaction (monitored by TLC), the reaction mixture was quenched with water and extracted by EtOAc. The combined organic layer was dried over anhydrous Na₂SO₄ and filtered, after removal of the solvent and the crude product was purified by column chromatography (petroleum ether/ethyl acetate, 2:1) to provide the **C** as a solid.

(iii) General Procedure for the Synthesis of N-substituted-3-vinylindoles (1a)¹

The stirred mixture of N-substituted indole-3-carboxaldehyde C (1.0 mmol, 1.0 equiv) and NH₄OAc (1.5 mmol, 1.5 equiv) in CH₃NO₂ (2.0 mL) was heated at 70 °C for 6 h. Then the reaction mixture was filtered, the solid was washed with H₂O and residue was further purified by re-crystallization from hot methanol to afford **1a** as a yellow solid.

3) Typical Procedures

The stirred mixture of N-methyl-3-vinylindoles **1a** (0.3 mmol), **2a** (0.45 mmol, 1.5 equiv) and CsF (0.9 mmol, 3.0 equiv) in CH₃CN (2.0 mL) at 60 °C for 6 h under dry O_2 atmosphere. After the completion of the reaction (monitored by TLC), the reaction mixture was filtered, organic layer was dried over Na₂SO₄. Then removal of the solvent, the crude product was purified by column chromatography (petroleum ether/ethyl acetate, 10:1) to provide the desired products **3a** as a yellow solid.

4) Characterization Data

11-methyl-5-nitro-11H-benzo[a]carbazole (3a): yellow solid, isolated yield 95% (78 mg); mp: 206.9-207.7 °C; ¹H NMR (CD₂Cl₂, 500 MHz) $\delta = 8.92$ (s, 1H), 8.85 (d, J = 8.5 Hz, 1H), 8.69 (d, J = 8.0 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.74-7.67 (m, 2H), 7.60-7.56 (m, 2H), 7.40-7.38 (m, 1H), 4.26 (s, 3H); ¹³C NMR (CD₂Cl₂, 125 MHz) $\delta = 142.1$, 139.7, 138.9, 127.9, 126.6 (2C), 125.8, 125.0, 123.3, 123.2, 122.4, 121.6, 120.2, 120.2, 116.8, 110.2, 34.6; HRMS (ESI, m/z) calcd for [C₁₇H₁₂N₂O₂]Na⁺: 299.0791; Found 299.0791.

11-(cyclopropylmethyl)-5-nitro-11H-benzo[a]carbazole (3b): yellow solid, isolated yield 87% (82 mg); mp: 151.0-152.1 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.87 (d, *J* = 8.0 Hz, 1H), δ = 8.87 (s, 1H), 8.64 (d, *J* = 9.5 Hz, 1H), 8.01 (d, *J* = 7.5 Hz, 1H), 7.69-7.64 (m, 2H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 4.58 (d, *J* = 5.5 Hz, 2H), 1.44-1.39 (m, 1H), 0.59-0.55 (m, 2H), 0.43-0.40 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ = 141.6, 139.4, 137.8, 127.4, 126.3, 126.2, 125.4, 124.8, 123.0, 122.6, 121.6, 121.2, 119.8, 119.7, 116.8, 110.1, 48.8,

10.8, 3.6; HRMS (ESI, m/z) calcd for [C₂₀H₁₆N₂O₂]H⁺: 317.1285; Found 317.1289.

11-benzyl-5-nitro-11H-benzo[a]carbazole (3c): yellow solid, isolated yield 85% (90 mg); mp: 211.1-212.0 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.96$ (s, 1H), 8.85 (d, J = 9.0 Hz, 1H), 8.21 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.45-7.39 (m, 3H), 7.32-7.27 (m, 3H), 7.14 (d, J = 7.0 Hz, 2H), 5.80 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 141.9$, 139.8, 138.3, 136.0, 129.2, 127.9, 127.6, 127.5, 126.5, 125.7, 125.4, 124.7, 123.1, 122.6, 122.5, 121.8, 121.4, 119.7, 116.9, 109.9, 49.8; HRMS (ESI, m/z) calcd for [C₂₃H₁₆N₂O₂]H⁺: 353.1285; Found 353.1290.

11-allyl-5-nitro-11H-benzo[a]carbazole (3d): yellow solid, isolated yield 83% (75 mg); mp: 140.0-141.2 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.97$ (s, 1H), 8.89 (d, J = 8.5 Hz, 1H), 8.39 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.47 (d, J = 8.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 6.31-6.24 (m, 1H), 5.32 (d, J = 10.5 Hz, 1H), 5.24 (t, J = 1.5 Hz, 2H), 5.01 (d, J = 17.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 141.6$, 139.6, 138.3, 131.7, 127.6, 126.5, 126.4, 125.4, 124.8, 123.1, 122.7, 121.6, 121.4, 119.9, 119.8, 117.7, 116.8, 109.9, 48.5. HRMS (ESI, m/z) calcd for [C₁₉H₁₅N₂O₂]H⁺: 303.1128; Found 303.1129.

5-nitro-11-(prop-2-yn-1-yl)-11H-benzo[a]carbazole (3e): yellow solid, isolated yield 75% (68 mg); mp: 229.0-209.5 °C; ¹H NMR (CD₂Cl₂, 500 MHz) δ = 8.98 (s, 1H), 8.84 (t, *J* = 5.0 Hz, 1H), 8.78 (t, *J* = 5.0 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 7.79-7.75 (m, 2H), 7.67-7.60 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 5.43 (s, 2H), 2.57 (s, 1H); ¹³C NMR (CD₂Cl₂, 125 MHz) δ = 141.7, 140.8, 138.3, 128.3, 127.3, 127.2, 125.9, 125.2, 123.7, 123.6, 122.4, 122.2, 120.6, 120.1, 117.6, 110.2, 78.2, 74.8, 37.1; HRMS (ESI, m/z): calcd for [C₁₉H₁₂N₂O₂]H⁺: 301.0972; Found 301.0973.

5-nitro-11-phenyl-11H-benzo[a]carbazole (3f): yellow solid, isolated yield 72% (73 mg); mp: 198.0-199.2 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 9.11 (s, 1H), 8.86 (d, *J* = 9.0 Hz, 1H), 8.18 (d, *J* = 7.5 Hz, 1H), 7.69-7.68 (m, 3H), 7.61 (t, *J* = 8.5 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 7.48-7.40 (m, 4H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ = 143.0, 140.1, 138.8, 138.4, 130.5, 129.7, 128.7, 127.6, 126.4, 126.0, 125.4, 124.7, 123.1, 122.7, 121.9, 121.5, 120.0, 119.7, 117.1, 111.0; HRMS (ESI, m/z) calcd for [C₂₂H₁₄N₂O₂]H⁺: 339.1128; Found 339.1132.

(11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3g): yellow solid, isolated yield 96% (96 mg); mp: 155.0-155.5 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.69 (d, *J* = 8.5 Hz, 1H), 8.57 (d, *J*

= 7.5 Hz, 1H), 8.27 (s, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.91 (d, J = 7.0 Hz, 2H), 7.59 (t, J = 7.5 Hz, 2H), 7.56-7.46 (m, 5H), 7.27 (t, J = 8.0 Hz, 1H), 4.32 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 198.0, 141.1, 139.6, 137.3, 132.6, 131.5, 130.4, 128.3, 127.9, 127.4, 125.9, 125.6, 125.3, 123.9, 123.0, 122.7, 122.3, 120.3, 119.6, 116.9, 109.3, 34.1; HRMS (ESI, m/z) calcd for [C₂₄H₁₇NO]H⁺: 336.1383; Found 336.1385.

1-(11-methyl-11H-benzo[a]carbazol-5-yl)ethanone (3h): yellow solid, isolated yield 99% (81 mg); mp: 163.0-163.8 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 9.19$ (d, J = 8.5 Hz, 1H), 8.42 (d, J = 8.5 Hz, 1H), 8.35 (s, 1H), 7.99 (d, J = 7.5 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.51-7.47 (m, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.32 (t, J = 7.0 Hz, 1H), 4.01 (s, 3H), 2.74 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 200.5$, 141.0, 137.7, 130.7, 127.7, 126.6, 126.4, 125.3, 125.2, 124.3, 122.9, 122.5, 122.1, 120.3, 119.3, 116.5, 109.3, 33.8, 29.6; HRMS (ESI, m/z) calcd for [C₁₉H₁₅NO]H⁺: 274.1226; Found 274.1226.

methyl 11-methyl-11H-benzo[a]carbazole-5-carboxylate (3i): yellow solid, isolated yield 94% (82 mg); mp: 168.0-168.8 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 9.24 (d, *J* = 8.5 Hz, 1H), 8.78 (s, 1H), 8.53 (d, *J* = 8.5 Hz, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 1H), 4.14 (s, 3H), 4.02 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 168.3, 141.0, 138.0, 131.5, 127.2, 126.0, 125.2, 125.0, 125.0, 125.0, 125.0, 125.0, 125.2, 120.3, 119.6, 118.0, 117.1, 109.2, 51.9, 34.0; HRMS (ESI, m/z) calcd

for [C₁₉H₁₅NO₂]H⁺: 290.1176; Found 290.1179.

11-methyl-11H-benzo[a]carbazole-5-carbonitrile (3j): yellow solid, isolated yield 99% (76 mg); mp: 191.8-192.6 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.43 (d, *J* = 8.5 Hz, 1H), 8.28 (d, *J* = 7.5 Hz, 1H), 8.19 (s, 1H), 7.93 (d, *J* = 7.5 Hz, 1H), 7.63-7.56 (m, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 4.05 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 140.7, 137.3, 131.6, 126.6, 126.5, 126.4, 126.3, 125.9, 122.4, 122.0, 121.7, 120.9, 119.5, 119.3, 117.5, 109.3, 100.6, 33.7; HRMS (ESI, m/z) calcd for [C₁₈H₁₂N₂]H⁺: 257.1073; Found 257.1071.

(7,11-dimethyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3k): yellow solid, isolated yield 97% (102 mg); mp: 176.0-176.6 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.73$ (d, J = 8.5 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H), 8.46 (s, 1H), 7.93 (d, J = 7.0 Hz, 2H), 7.63-7.48 (m, 3H), 7.47 (t, J = 7.5 Hz, 2H), 8.56 (d, J = 4.0 Hz, 2H), 7.06 (t, J = 4.0 Hz, 1H), 4.34 (s, 3H), 2.72 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 198.1$, 141.3, 139.6, 137.4, 132.6, 132.5, 130.9, 130.4, 128.2, 127.6, 127.2, 126.2, 125.8, 125.4, 125.0, 122.5, 122.4, 122.1, 121.5, 117.7, 107.1, 34.4, 20.8; HRMS (ESI, m/z) calcd for [C₂₅H₁₉NO]H⁺: 350.1539; Found 350.1543.

(8-methoxy-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3l): yellow solid, isolated yield 96% (105 mg); mp: 176.2-176.9 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.62$ (d, J = 8.0 Hz, 1H), 8.56 (d, J = 8.5 Hz, 1H), 8.20 (s, 1H), 7.92 (d, J = 7.0 Hz, 2H), 7.61-7.52 (m, 3H),

7.48 (t, J = 7.5 Hz, 2H), 7.39 (s, 1H), 7.36 (d, J = 9.0 Hz, 1H), 7.09 (dd, J = 9.0 Hz, 2.0 Hz, 1H), 4.23 (s, 3H), 3.86 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 197.9$, 154.5, 139.8, 137.6, 136.0, 132.5, 131.4, 130.4, 128.3, 127.4, 127.3, 125.8, 125.5, 124.1, 123.2, 122.8, 122.2, 116.5, 114.9, 110.1, 101.5, 55.9, 34.1; HRMS (ESI, m/z) calcd for [C₂₅H₁₉NO₂]H⁺: 366.1487; Found 366.1496.

(9-fluoro-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3m): yellow solid, isolated yield 98% (104 mg); mp: 185.0-185.9 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.56$ (d, J = 8.5 Hz, 1H), 8.51 (d, J = 8.0 Hz, 1H), 8.10 (s, 1H), 7.88 (d, J = 7.5 Hz, 2H), 7.82-7.79 (m, 1H), 7.60-7.45 (m, 5H), 7.11 (d, J = 9.5 Hz, 1H), 6.96 (t, J = 8.5 Hz, 1H), 4.15 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 197.9$, 161.7 (d, J = 240.4 Hz), 141.6 (d, J = 12.1 Hz), 139.5 (2C), 137.5, 132.7, 131.0, 130.4, 128.4, 128.3, 127.3, 125.8 (d, J = 6.2 Hz), 123.1, 122.5, 122.0, 120.5 (d, J = 10.4 Hz), 119.2, 116.6, 108.5 (d, J = 24.3 Hz), 96.2 (d, J = 26.9 Hz), 34.2; HRMS (ESI, m/z) calcd for [C₂₄H₁₆FNO]H⁺: 354.1289; Found 354.1293.

(8-chloro-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3n): yellow solid, isolated yield 98% (108 mg); mp: 211.9-212.5 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.68 (d, J = 8.0 Hz, 1H), 8.55 (d, J = 8.5 Hz, 1H), 8.18 (s, 1H), 7.93 (s, 1H), 7.90 (d, J = 7.0 Hz, 2H), 7.62 (t, J= 7.5 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 8.0 Hz, 2H), 7.42 (d, J = 1.0 Hz, 2H), 4.33 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 197.8, 139.4, 139.3, 137.7, 132.7, 131.7, 130.4, 128.4, 128.3, 127.5, 126.2, 125.8 (2C), 125.3, 123.9, 123.5, 122.6, 122.2, 119.1, 115.9, 110.4, 34.2; HRMS (ESI, m/z) calcd for [C₂₄H₁₆CINO]H⁺: 370.0993; Found 370.0998.

(8-bromo-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (30): yellow solid, isolated yield 99% (123 mg); mp: 222.6-223.1 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.60$ (d, J = 8.0 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.12 (s, 1H), 8.03 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.63-7.55 (m, 3H), 7.51-7.47 (m, 3H), 7.31 (d, J = 8.5 Hz, 1H), 4.23 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 197.8$, 139.6, 139.4, 137.5, 132.7, 131.7, 130.4, 128.4 (2C), 127.9, 127.4, 126.2, 125.9, 124.5, 123.4, 122.6, 122.2, 122.2, 115.8, 113.2, 110.8, 34.2; HRMS (ESI, m/z) calcd for [C₂₄H₁₆BrNO]H⁺: 414.0488; Found 414.0488.

(9-bromo-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3p): yellow solid, isolated yield 97% (120 mg); mp: 226.1-227.2 °C; ¹H NMR (CD₂Cl₂, 500 MHz) δ = 8.73 (d, *J* = 8.5 Hz, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.21 (s, 1H), 7.90 (d, *J* = 7.0 Hz, 2H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.73 (s, 1H), 7.67-7.62 (m, 2H), 7.58 (t, *J* = 7.5 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 2H), 7.38 (dd, *J* = 8.5 Hz, 1.5 Hz, 1H), 4.32 (s, 3H); ¹³C NMR (CD₂Cl₂, 125 MHz) δ = 197.9, 142.3, 139.9, 137.9, 133.1, 131.9, 130.7, 129.1, 128.8, 127.8, 126.4, 126.3, 123.7, 123.5, 123.1, 122.8, 122.3, 121.2, 119.1, 116.9, 113.0, 34.7; HRMS (ESI, m/z) calcd for [C₂₄H₁₆BrNO]H⁺: 414.0488; Found 414.0488.

(6,11-dimethyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3q): yellow solid, isolated yield 85% (89 mg); mp: 138.5-139.6 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.74 (d, J = 8.5 Hz, 1H),

7.94 (d, J = 7.5 Hz, 1H), 7.59 (t, J = 7.0 Hz, 1H), 7.56-7.48 (m, 7H), 7.39 (t, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 4.36 (s, 3H), 2.17 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 208.1$, 141.2, 138.5, 135.8, 132.3, 132.1, 130.7, 128.9, 128.7, 128.3, 126.0, 125.8, 125.3, 124.8, 122.8, 122.5, 121.8, 119.6, 116.7, 115.3, 109.0, 34.3, 33.5; HRMS (ESI, m/z) calcd for [C₂₅H₁₉NO]H⁺: 350.1539; Found 350.1542.

(11-methyl-6-phenyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3r): yellow solid, isolated yield 88% (108 mg); mp: 201.0-202.1 °C; ¹H NMR (CDCl₃, 500 MHz) $\delta = 8.80$ (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.63 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.52 (d, J = 8.5 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.39 (t, J = 7.5 Hz, 2H), 7.29-7.22 (m, 7H), 6.95 (t, J = 8.0 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 4.43 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) $\delta = 200.2$, 141.2, 139.1, 138.0, 136.0, 133.8, 132.9, 130.5, 130.1, 129.5, 129.5, 128.1, 127.7, 126.9, 125.7, 125.3, 124.8, 122.8, 122.4, 121.9, 121.6, 119.6, 117.1, 115.3, 108.9, 34.3; HRMS (ESI, m/z) calcd for [C₃₀H₂₁NO]H⁺: 412.1696; Found 412.1698.

phenyl(2,3,11-trimethyl-11H-benzo[a]carbazol-5-yl)methanone (3s): yellow solid, isolated yield 95% (103 mg); mp: 237.0-238.0 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.36 (s, 2H), 8.20 (s, 1H), 7.98 (d, *J* = 7.5 Hz, 1H), 7.93 (d, *J* = 7.5 Hz, 2H), 7.93 (d, *J* = 7.5 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.50-7.46 (m, 2H), 7.26 (t, *J* = 7.0 Hz, 1H), 4.29 (s, 3H), 2.44 (s, 3H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 198.2, 141.0, 139.8, 137.1, 135.6, 135.1, 132.5, 130.5, 130.4, 128.3, 127.1, 127.1, 124.9, 123.3, 123.1, 122.1, 121.5, 120.1, 119.4, 116.3, 109.2, 34.0, 20.7, 20.3; HRMS (ESI,

m/z) calcd for [C₂₆H₂₁NO]H⁺: 364.1696; Found 364.1698.

(3-methoxy-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3t): yellow solid, isolated yield 49% (54 mg), (3r : 3r' = 1.1 : 1, in total : 94%); mp: 226.0-227.1 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.65 (d, *J* = 9.5 Hz, 1H), 8.33 (s, 1H), 8.20 (s, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.54-7.47 (m, 4H), 7.30-7.28 (m, 2H), 4.36 (s, 3H), 3.90 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 198.3, 157.8, 141.1, 140.2, 138.3, 133.6, 132.4, 130.4, 128.3, 126.2, 125.8, 125.0, 123.8, 123.2, 120.3, 119.4, 117.6, 117.5, 115.6, 109.2, 106.7, 55.2, 34.1; HRMS (ESI, m/z) calcd for [C₂₅H₁₉NO₂]H⁺: 366.1489; Found 366.1493.

(2-methoxy-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3t'): yellow solid, isolated yield 45% (48 mg), (3r : 3r' = 1.1 : 1, in total : 94%); mp: 165.0-166.1 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.52 (d, *J* = 9.5 Hz, 1H), 8.15 (s, 1H), 8.07 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.53-7.47 (m, 4H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.23 (dd, *J* = 9.5 Hz, 2.0 Hz, 1H), 4.37 (s, 3H), 4.00 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 198.0, 157.2, 141.2, 139.7, 136.8, 132.5, 130.5, 129.0, 128.3, 128.0, 126.5, 125.3, 124.0, 123.1, 122.1, 120.2, 119.7, 117.4, 116.0, 109.3, 103.6, 55.4, 33.9; HRMS (ESI, m/z) calcd for [C₂₅H₁₉NO₂]H⁺: 366.1489; Found 366.1495.

(2,3-difluoro-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3u): yellow solid, isolated yield 94% (105 mg); mp: 224.0-224.6 °C; ¹H NMR (CD₂Cl₂, 500 MHz) δ = 8.60-8.55 (m, 1H), 8.51-8.47 (m, 1H), 8.33 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.88 (d, *J* = 7.5 Hz, 2H), 7.66 (t, *J* = 7.0 Hz, 1H), 7.59 (d, *J* = 8.5 Hz, 1H), 7.56-7.51 (m, 3H), 7.31 (t, *J* = 7.5 Hz, 1H), 4.33 (s, 3H); ¹³C NMR (CD₂Cl₂, 125 MHz) δ = 197.4, 149.8 (dd, *J* = 241.6 Hz, 9.6 Hz), 149.3 (dd, *J* = 250.6 Hz, 18.9 Hz), 141.6, 140.0, 137.2, 133.0, 130.7, 129.3 (d, *J* = 6.6 Hz), 128.8, 126.8, 126.2, 125.7, 123.1, 121.0, 120.0, 120.0 (d, *J* = 7.1 Hz), 117.5, 114.8 (d, *J* = 18.9 Hz), 110.0, 109.8 (d, *J* = 19.0 Hz), 34.2; HRMS (ESI, m/z) calcd for [C₂₄H₁₅F₂NO]H⁺: 372.1195; Found 372.1200.

(3-chloro-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3v): yellow solid, isolated yield 47% (52 mg), (3t : 3t' = 1 : 1, in total : 93%); mp: 194.0-195.1 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.63 (s, 1H), 8.52 (d, *J* = 9.0 Hz, 1H), 8.28 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.62 (t, *J* = 7.5 Hz, 1H), 7.56-7.47 (m, 5H), 7.30 (t, *J* = 7.0 Hz, 1H), 4.34 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ = 197.6, 141.2, 139.4, 136.2, 132.7, 131.5, 130.5, 129.7, 129.0, 128.4, 127.6, 126.4, 125.8, 124.2, 123.4, 122.7, 121.4, 120.6, 119.8, 117.8, 109.5, 34.0; HRMS (ESI, m/z) calcd for [C₂₄H₁₆CINO]H⁺: 370.0993; Found 370.0998.

(2-chloro-11-methyl-11H-benzo[a]carbazol-5-yl)(phenyl)methanone (3v'): yellow solid, isolated yield 46% (51 mg), (3t : 3t' = 1 : 1, in total : 93%); mp: 156.8-157.6 °C; ¹H NMR (CDCl₃, 500 MHz) δ = 8.67 (s, 1H), 8.63 (d, J = 9.0 Hz, 1H), 8.30 (s, 1H), 8.00 (d, J = 7.5 Hz, 1H), 7.91 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.5 Hz, 1H), 7.57-7.49 (m, 5H), 7.30 (t, J = 8.0 Hz, 1H), 4.35 (s, 3H);
¹³C NMR (CDCl₃, 125 MHz) δ = 197.4, 141.2, 139.4, 137.2, 132.7, 132.4, 132.3, 130.5, 128.4,

126.7, 126.6, 126.3, 125.6, 125.2, 123.7, 122.9, 121.0, 120.6, 119.7, 117.1, 109.4, 34.2; HRMS (ESI, m/z) calcd for [C₂₄H₁₆ClNO]H⁺: 370.0993; Found 370.0997.

5) X-ray crystallographic studies for 3c.

The single crystals of **3c** suitable for X-ray analysis were grown in solution of hexane, diethyl ether and ethyl acetate as co-solvent. Data collections for **3c** were performed at 25 °C on a Rigaku RAXIS RAPID IP diffractometer, using graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å). The determination of crystal class and unit cell parameters was carried out by the Rapid-AUTO (Rigaku 2000) program package for **3c**. The raw frame data were processed using Crystal Structure (Rigaku/MSC 2000) for **3c** to yield the reflection data file. The structures of **3c** were solved by use of SHELXTL program. Refinement was performed on F2 anisotropically for all the non-hydrogen atoms by the full-matrix least-squares method. The hydrogen atoms were placed at the calculated positions and were included in the structure calculation without further refinement of the parameters. Crystal data, data collection and processing parameters for compounds **3c** are summarized in **Table S1**. Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-1059087 (**3c**). Copies of these data can be obtained free of charge from the Cambridge Crystallographic Data Centre via <u>www.ccde.cam.ac.uk/deposit</u>.

Table S1. Crystal data and structure refinement for 3c.

Identification code	3c
Empirical formula	$C_{23}H_{16}N_2O_2$
Formula weight	352.38
Temperature/K	180.01(10)
Crystal system	monoclinic
Space group	P2 ₁
Unit cell dimensions	$a = 5.7929(3)$ Å $\alpha = 90^{\circ}$

	$b = 14.5941(5) \text{ Å} \beta = 105.323(5)^{\circ}$
	$c = 10.6740(5) \text{ Å} \gamma = 90^{\circ}$
Volume	870.32(7) Å ³
Ζ	2
Density (calculated)	1.345 mg/mm ³
Absorption coefficient	0.697 m/mm ⁻¹
F(000)	368.0
Crystal size/mm ³	$0.1\times0.05\times0.05$
Radiation	CuK α (λ = 1.54184 Å)
Theta range for data collection	8.59 to 133.116°
Index ranges	$-6 \le h \le 4, -17 \le k \le 17, -12 \le l \le 12$
Reflections collected	4998
Independent reflections	2662 [$R_{int} = 0.0304$, $R_{sigma} = 0.0273$]
Data/restraints/parameters	2662/1/244
Goodness-of-fit on F ²	1.133
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0846, wR_2 = 0.2608$
Final R indexes [all data]	$R_1 = 0.0859, wR_2 = 0.2617$
Largest diff. peak/hole	0.41/-0.43 e Å ⁻³

Figure S1. OPTEP structure of 3c

6) References

- 1 V. Lanke and K. R. Prabhu, Org. Lett., 2013, 15, 6262.
- L. Shi, D. Zhang, R. Lin, C. Zhang, X. Li and N, Jiao, *Tetrahedron. Lett.*, 2014, 55, 2243.
- 3 D. S. Giorgio, I. Irene and S. Aldo, Synlett., 2006, 9, 1319.
- 4 E. Caballero, N. Longieras, E. Zausa, B. del Rey, M. Medarde and F Tomé, *Tetrahedron. Lett.*, 2001, **42**, 7233.

7) Scanned ¹H NMR and ¹³C NMR Spectra of All New Compounds
 ¹H and ¹³C Spectrum of Compound 3a

¹H and ¹³C Spectrum of Compound **3c**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of Compound $\mathbf{3d}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of Compound 3f

¹H and ¹³C Spectrum of Compound **3i**

¹H and ¹³C Spectrum of Compound **3**j

¹H and ¹³C Spectrum of Compound **3r**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of Compound $\mathbf{3t'}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of Compound $\boldsymbol{3u}$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of Compound 3v

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ Spectrum of Compound $\mathbf{3v'}$

