Supplementary Information

Synthesis, Structure and Catalysis of NHC-Pd(II) Complex Based on Tetradentate Mixed Ligand

Qing-Xiang Liu*, Kang-Qing Cai, Zhi-Xiang Zhao

Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, China.

* Corresponding author, E-mail: tjnulqx@163.com

List of the contents

- 1. The figures for the crystal packings of complex 1
- 2. Optimization of the reaction conditions for the Suzuki-Miyaura, Heck-Mizoroki and Sonogashira reactions (Table S1-Table S3)
- 3. The comparison of the reaction conditions between the present paper and literatures in three types of C-C coupling reactions (Table S4)
- The data of ¹H NMR and ¹³C NMR spectra for all coupling products in Suzuki-Miyaura, Heck-Mizoroki and Sonogashira reactions
- 5. The figures of ¹H NMR and ¹³C NMR spectra for all intermediates, precursors [(S)-LH₂]·(PF₆)₂, complex 1, and all coupling products in Suzuki-Miyaura, Heck-Mizoroki and Sonogashira reactions

1. The figures for the crystal packings of complex 1

Figure S1. 2D supramolecular layer of complex 1 via $\pi \cdots \pi$ contacts. All hydrogen atoms were omitted for clarity.

2. Optimization of the reaction conditions for the Suzuki-Miyaura, Heck-Mizoroki and Sonogashira reactions (Table S1-Table S3)

Table	S1	Suzuki-Miyaura	reaction	of	4-bromotoluene	with	phenylboronic	acid
catalyze	ed b	y complex 1 ^[a]						
			/=	=/	0.1 mol% cat., base	. [[

Me-	Br	+ (HO) ₂ B	0.1 mol% cat	., base Me	
Entry	Base	Solvent	Time (h) ^[b] A	Ancillary catalys	ts Yields (%) ^[c]
1	K ₂ CO ₃	H ₂ O	12	-	97%
2	K ₂ CO ₃	MeOH/H ₂ O (1:1)	6		98%
3	K ₂ CO ₃	MeOH	12	-	80%
4	K_2CO_3	C ₂ H ₅ OH	12	-	25%
5	K_2CO_3	1,4-dioxane	12	-	40%
6	K ₂ CO ₃	THF	12	-	7%
7	K_2CO_3	C ₂ H ₅ OH/H ₂ O (1:1)	12		72%
8	^t BuOK	H ₂ O	12	-	72%
9	$K_3PO_4 \cdot 3H_2$ O	H ₂ O	12	-	74%

10	NaOAc	H_2O	12	-	52%
11	K_2CO_3	H ₂ O	6	TBAB	99%
12	K_2CO_3	H ₂ O	6	PEG-400	94%
13	K_2CO_3	MeOH	6	PEG-400	93%
14	K_2CO_3	MeOH	6	TBAB	97%

- [a] Reaction conditions: 4-bromotoluene (0.5 mmol), phenylboronic acid (0.6 mmol), base (1.2 mmol), PEG-400 (10 mol%), TBAB (10 mol%), complex 1 0.1 mol%, solvent (6.0 mL) at 40 °C and in air.
- [b] Monitered by TLC.
- [c] Determined by a GC method using n-tridecane as internal standard, and using 4-bromotoluene as a standard.

Table S2 Heck-Mizoroki reaction of bromobenzene with styrene catalyzed by NHC-

Pd(II) complex 1^[a]

	Br	+	0.1 mol%	ent		
Entry	Solvent	Base	T (°C)	Ancillary catalysts	Time (h) ^[b]	Yield (%) ^[c]
1	1,4-dioxane	NaOAc	120	-	24	92
2	1,4-dioxane	K_2CO_3	120	-	24	65
3	1,4-dioxane	$K_3PO_4 \cdot 3H_2O$	120	-	24	78
4	1,4-dioxane	Et ₃ N	120	-	24	15
5	1,4-dioxane	^t BuOK	120	-	24	36
6	1,4-dioxane	КОН	120	-	24	25
7	1,4-dioxane	NaHCO ₃	120	-	24	83
8	1,4-dioxane	Cs_2CO_3	120	-	24	39
9	H_2O	NaOAc	120	-	24	Trace
10	DMF	NaOAc	120	-	24	45
11	CH ₃ CN	NaOAc	120	-	24	14
12	THF	NaOAc	120	-	24	27
13	DME	NaOAc	120	-	24	52
14	DMSO	NaOAc	120	-	24	11
15	1,4-dioxane	NaOAc	100	-	30	61
16	1,4-dioxane	NaOAc	100	PEG-400	24	95
17	1,4-dioxane	NaOAc	100	TBAB	24	90

[a] Reaction conditions: bromobenzene (0.5 mmol), styrene (0.6 mmol), base (1.2 mmol), complex 1 (0.1 mol%), PEG-400 (10 mol%), TBAB (10 mol%), solvent (6 mL) in air.

[b] Monitored by TLC.

[c] Isolated yield using bromobenzene as a standard.

$H_3CO \longrightarrow Br + = \longrightarrow 0.1 \text{ mol% cat., base} H_3CO \longrightarrow H_3CO \longrightarrow OCCUPATION H_3CO \longrightarrow OCUPATION H_3CO \longrightarrow O$					
Entry	Solvent	Base	Ancillary catalysts	Yield (%) ^[c]	
1	1,4- dioxane/H ₂ O (1:1) 1 4-	K ₃ PO ₄ ·3H ₂ O	-	79	
2	dioxane/H ₂ O (1:1)	$K_3PO_4 \cdot 3H_2O$	TBAB	93	
3	1,4-dioxane	Cs ₂ CO ₃	-	35	
4	DMF	Cs_2CO_3	-	21	
5	DMSO	Cs_2CO_3	-	10	
6	CH ₃ CN	Cs ₂ CO ₃	-	25	
7	H ₂ O	Cs ₂ CO ₃	-	29	
8	THF	Cs ₂ CO ₃	-	trace	
9	DMF/H ₂ O (1:1)	Cs ₂ CO ₃	-	53	
10	dioxane/H ₂ O (1:1)	Cs ₂ CO ₃	-	69	
11	1,4- dioxane/H ₂ O (1:1)	Cs ₂ CO ₃	PPh ₃	82	
12	1,4- dioxane/H ₂ O (1:1)	Cs ₂ CO ₃	TBAB	91	
13	1,4- dioxane/H ₂ O (1:1)	K ₂ CO ₃	TBAB	86	
14	1,4- dioxane/H ₂ O (1:1)	КОН	TBAB	78	

Table S3 Sonogashira reaction of 4-bromoanisole with phenylacetylene catalyzed byNHC-Pd(II) complex $1^{[a], [b]}$

	1,4-			
15	dioxane/H ₂ O	NaOAc	TBAB	70
	(1:1)			
	1,4-			
16	dioxane/H ₂ O	Et ₃ N	TBAB	89
	(1:1)			
	1,4-			
17	dioxane/H ₂ O	NaHCO ₃	TBAB	82
	(1:1)			

[a] Reaction conditions: 4-bromoanisole (0.5 mmol), phenylacetylene (0.6 mmol), base (1.2 mmol), complex 1 (0.1 mol%), TBAB (10 mol%), PPh₃ (10 mol%), solvent (6 mL) at 100°C in air.

[b] Reactions were monitored by TLC.

[c] Isolated yield using 4-bromoanisole as a standard.

3. The comparison of the reaction conditions between the present paper and literatures in three types of C-C coupling reactions

Reaction		catalyst	T (°C)	solvents	bases
types		loading			
		(mol%)			
Suzuki-	а	0.1	40	H ₂ O	K ₂ CO ₃
Miyaura	b	0.1-5	25-140	H ₂ O, THF, DMA,	K ₂ CO ₃ , KOH,
				Dioxane, Toluene,	K ₃ PO ₄ , KO ^t Bu,
				THF/H ₂ O,	Cs ₂ CO ₃ , CsF
				Toluene/EtOH/H ₂ O	
Heck	а	0.1	100	Dioxane	NaOAc
-Mizoroki	b	0.1-3	80-150	DMSO, DMF,	NaOAc, Na ₂ CO ₃ ,
				DMA, H ₂ O	NaHCO _{3,} K ₃ PO ₄ ,
					K ₂ CO ₃ , KHCO ₃ ,
					Cs_2CO_3 , Et_3N
Sonogashira	а	0.1	100	Dioxane/H ₂ O	K ₃ PO ₄
	b	1-4	80-120	DMSO, DMF,	K ₃ PO ₄ , K ₂ CO ₃ ,
				Dioxane, DMF/H ₂ O,	Cs ₂ CO ₃ , Et ₃ N
				DMA/H ₂ O	

Table S4 The comparison of the reaction conditions between the present paper and
 literatures in three types of C-C coupling reactions

a: the data of the present paper; b: the data of literatures.

4. The data of ¹H NMR and ¹³C NMR spectra for all coupling products in the

Suzuki-Miyaura, Heck-Mizoroki and Sonogashira reactions

¹H NMR (400 MHz, CDCl₃): δ 3.84 (s, 3H, CH₃), 6.98 (d, J = 8.4 Hz, 2H, Ar*H*), 7.29 (t, J = 7.4 Hz, 1H, Ar*H*), 7.41 (t, J = 7.6 Hz, 2H, Ar*H*), 7.55 (t, J = 8.4 Hz, 4H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 55.3 (CH₃), 114.2 (Ar*C*), 126.7 (Ar*C*), 128.1 (Ar*C*), 128.7 (Ar*C*), 133.7 (Ar*C*), 140.8 (Ar*C*), 159.1 (Ar*C*).

OCH₃ 3-Methoxybiphenyl (**2b**)² ¹H NMR (400 MHz, CDCl₃): δ 3.83 (s, 3H, CH₃), 6.89 (d, J = 8.0 Hz, 1H, Ar*H*), 7.12 (d, J = 1.6 Hz, 1H, Ar*H*), 7.18 (d, J = 7.6 Hz, 1H, Ar*H*), 7.35 (m, 2H, Ar*H*), 7.41 (t, J= 7.6 Hz, 2H, Ar*H*), 7.58 (d, J = 7.6 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 55.2 (CH₃), 112.6 (ArC), 112.9 (ArC), 119.6 (ArC), 127.1 (ArC), 127.3 (ArC), 128.7 (ArC), 129.7 (ArC), 141.0 (ArC), 142.7 (ArC), 159.9 (ArC).

^A-NH₂ 4-Phenylaniline (**2c**)³ ¹H NMR (400 MHz, CDCl₃): δ 3.67 (s, 2H, NH₂), 6.73 (d, J = 8.4 Hz, 2H, Ar*H*), 7.25 (d, J = 7.2 Hz, 1H, Ar*H*), 7.41 (m, 4H, Ar*H*), 7.53 (d, J = 7.2 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 115.3 (Ar*C*), 126.2 (Ar*C*), 126.3 (Ar*C*), 127.9 (Ar*C*), 128.6 (Ar*C*), 131.5 (Ar*C*), 141.1 (Ar*C*), 145.8 (Ar*C*).

 \sim NO₂ 4-Nitrobiphenyl (**2d**)⁴

¹H NMR (400 MHz, CDCl₃): δ 7.51 (m, 3H, Ar*H*), 7.64 (t, *J* = 4.2 Hz, 2H, Ar*H*), 7.75 (d, *J* = 8.8 Hz, 2H, Ar*H*), 8.31 (d, *J* = 8.8 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 124.1 (Ar*C*), 127.3 (Ar*C*), 127.8 (Ar*C*), 128.9 (Ar*C*), 129.1 (Ar*C*), 138.7 (Ar*C*), 147.1 (Ar*C*), 147.6 (Ar*C*).

 \leftarrow -COCH₃ 4-Acetylbiphenyl (2e)⁴

¹H NMR (400 MHz, CDCl₃): δ 2.64 (s, 3H, CH₃), 7.40 (t, J = 7.2 Hz, 1H, ArH), 7.47 (t, J = 7.6 Hz, 2H, ArH), 7.62 (d, J = 7.2 Hz, 2H, ArH), 7.70 (d, J = 8.4 Hz, 2H, ArH), 8.04 (d, J = 8.4 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 26.6 (CH₃), 127.24 (ArC), 127.28 (ArC), 128.2 (ArC), 128.92 (ArC), 128.96 (ArC), 135.8 (ArC), 139.8 (ArC), 145.8 (ArC), 197.7 (CO).

1-Phenylnaphthalene (**2f**)²

¹H NMR (400 MHz, CDCl₃): δ 7.51 (m, 3H, Ar*H*), 7.62 (m, 6H, Ar*H*), 7.92 (d, *J* = 8.4 Hz, 1H, Ar*H*), 8.00 (q, *J* = 4.0 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 125.4 (Ar*C*), 125.8 (Ar*C*), 126.0 (Ar*C*), 126.9 (Ar*C*), 127.23 (Ar*C*), 127.29 (Ar*C*), 127.6 (Ar*C*), 128.3 (Ar*C*), 128.8 (Ar*C*), 130.1 (Ar*C*), 131.6 (Ar*C*), 133.8 (Ar*C*), 140.3 (Ar*C*), 140.8 (Ar*C*).

 $\bigcirc - \bigcirc - \bigcirc \bigcirc$

1,4-Diphenylnaphthalene (**2g**)⁵

¹H NMR (400 MHz, CDCl₃): δ 7.52 (m, 6H, Ar*H*), 7.60 (m, 8H, Ar*H*), 8.02 (q, *J* = 3.3 Hz,2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 125.8 (Ar*C*), 126.3 (Ar*C*), 126.4 (Ar*C*), 127.2 (Ar*C*), 128.2 (Ar*C*), 130.1 (Ar*C*), 131.9 (Ar*C*), 139.8 (Ar*C*), 140.8 (Ar*C*).

4, 4'-Diphenylbiphenyl (**2h**)⁶

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.52 (t, *J* = 7.4 Hz, 4H, Ar*H*), 7.70 (d, *J* = 4.4 Hz, 4H, Ar*H*), 7.74 (d, *J* = 7.6 Hz, 4H, Ar*H*), 7.79 (s, 6H, Ar*H*). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 126.5 (Ar*C*), 127.0 (Ar*C*), 127.2 (Ar*C*), 127.6 (Ar*C*), 128.6 (Ar*C*), 129.0 (Ar*C*), 131.8 (Ar*C*).

9 10-Dir

9,10-Diphenylanthracene $(2i)^7$

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.47 (q, *J* = 5.3 Hz, 8H, Ar*H*), 7.67 (m, 10H, Ar*H*). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 125.4 (Ar*C*), 126.3 (Ar*C*), 128.6 (Ar*C*), 129.1 (Ar*C*), 130.8 (Ar*C*).

2-Nitrobiphenyl (2j)²

¹H NMR (400 MHz, CDCl₃): δ 7.33 (q, J = 3.2 Hz, 2H, Ar*H*), 7.50 (m, 5H, Ar*H*), 7.63 (m, 1H, Ar*H*), 7.86 (q, J = 3.0 Hz, 1H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 124.0 (Ar*C*), 127.9 (Ar*C*), 128.1 (Ar*C*), 128.2 (Ar*C*), 128.7 (Ar*C*), 131.9 (Ar*C*), 132.2 (Ar*C*), 136.3 (Ar*C*), 137.3 (Ar*C*), 149.3 (Ar*C*).

2,4-Dinitrobiphenyl (2k)⁸

¹H NMR (400 MHz, CDCl₃): δ 7.38 (q, J = 3.2 Hz, 2H, ArH), 7.52 (t, J = 3.2 Hz, 3H, ArH), 7.72 (d, J = 8.8 Hz, 1H, ArH), 8.51 (q, J = 3.6 Hz, 1H, ArH), 8.74 (d, J = 2.0 Hz, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 119.7 (ArC), 126.4 (ArC), 127.6 (ArC), 129.1 (ArC), 129.5 (ArC), 133.2 (ArC), 135.2 (ArC), 142.2 (ArC), 146.8 (ArC), 149.1 (ArC).

OHC' Biphenyl-2-carbaldehyde (21)⁴

¹H NMR (400 MHz, CDCl₃): δ 7.33 (m, 7H, Ar*H*), 7.56 (q, *J* = 2.9 Hz, 1H, Ar*H*), 7.97 (q, *J* = 3.2 Hz, 1H, Ar*H*), 10.52 (s, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃): δ 126.5 (Ar*C*), 127.3 (Ar*C*), 128.0 (Ar*C*), 129.4 (Ar*C*), 129.6 (Ar*C*), 129.7 (Ar*C*), 130.6 (Ar*C*), 133.2 (Ar*C*), 135.1 (Ar*C*), 135.3 (Ar*C*), 189.8 (CHO).

2-Methylbiphenyl $(2m)^2$

¹H NMR (400 MHz, CDCl₃): δ 2.26 (s, 3H, CH₃), 7.24 (m, 3H, ArH), 7.33 (m, 3H,

Ar*H*), 7.43 (m, 3H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 20.5 (CH₃), 125.8 (Ar*C*), 126.8 (Ar*C*), 127.2 (Ar*C*), 127.3 (Ar*C*), 128.1 (Ar*C*), 128.8 (Ar*C*), 129.2 (Ar*C*), 129.8 (Ar*C*), 130.3 (Ar*C*), 135.3 (Ar*C*), 142.0 (Ar*C*).

¹H NMR (400 MHz, CDCl₃): δ 7.44 (t, *J* = 7.2 Hz, 2H, Ar*H*), 7.53 (t, *J* = 7.4 Hz, 4H, Ar*H*), 7.70 (d, *J* = 7.6 Hz, 4H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 127.2 (Ar*C*), 127.3 (Ar*C*), 128.8 (Ar*C*), 141.3 (Ar*C*).

4-Methylbiphenyl (**20**)¹

¹H NMR (400 MHz, CDCl₃): δ 2.38 (s, 3H, CH₂), 7.24 (d, J = 8.0 Hz, 2H, ArH), 7.30 (t, J = 7.4 Hz, 1H, ArH), 7.40 (t, J = 7.6 Hz, 2H, ArH), 7.47 (d, J = 8.0 Hz, 2H, ArH), 7.55 (d, J = 8.4 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 21.1 (CH₃), 127.0 (ArC), 127.2 (ArC), 128.7 (ArC), 129.5 (ArC), 137.0 (ArC), 138.4 (ArC), 141.2 (ArC).

C-CH3

4-Methoxystilbene (3a)⁹

¹H NMR (400 MHz, CDCl₃): δ 3.88 (s, 3H, CH₃), 6.97 (d, J = 8.8 Hz, 2H, ArH), 7.06 (d, J = 16.0 Hz, 1H, =CH), 7.12 (d, J = 16.0 Hz, 1H, =CH), 7.30 (t, J = 7.2 Hz, 1H, ArH), 7.41 (t, J = 7.6 Hz, 2H, ArH), 7.56 (q, J = 7.7 Hz, 4H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 55.2 (CH₃), 114.1 (ArC), 126.2 (ArC), 126.5 (ArC), 127.1 (=CH or ArC), 127.7 (=CH or ArC), 128.1 (ArC), 128.6 (ArC), 130.1 (ArC), 137.6 (ArC), 159.2 (ArC).

OCH₃ 3-Methoxystilbene (**3b**)¹⁰

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.80 (s, 3H, C*H*₃), 6.86 (d, *J* = 7.6 Hz, 1H, Ar*H*), 7.19 (d, *J* = 6.8 Hz, 2H, =C*H* or Ar*H*), 7.31 (m, 4H, =C*H* or Ar*H*), 7.40 (t, *J* = 7.6 Hz, 2H, Ar*H*), 7.61 (d, J = 7.6 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, DMSO- d_6): δ 55.0 (CH₃), 111.4 (Ar*C*), 113.4 (Ar*C*), 119.0 (Ar*C*), 119.1 (Ar*C*), 126.4 (Ar*C*), 127.6 (=*C*H or Ar*C*), 128.3 (Ar*C*), 128.6 (Ar*C*), 129.6 (Ar*C*), 136.9 (Ar*C*), 138.4 (Ar*C*), 159.5 (Ar*C*).

4-Anilinestilbene (3c)¹¹

¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 2H, NH₂), 6.67 (d, J = 8.0 Hz, 2H, ArH), 6.93 (d, J = 16.0 Hz, 1H, =CH), 7.00 (d, J = 16.0 Hz, 1H, =CH), 7.22 (t, J = 7.0 Hz, 1H, ArH), 7.34 (d, J = 6.8 Hz, 4H, ArH), 7.47 (d, J = 7.6 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 115.1 (ArC), 125.0 (ArC), 126.0 (ArC), 126.8 (ArC), 127.7 (=CH or ArC), 127.9 (=CH or ArC), 128.5 (ArC), 128.6 (ArC), 137.9 (ArC), 146.1 (ArC).

 \sim $-NO_2$ 4-Nitrostilbene (**3d**)¹²

¹H NMR (400 MHz, CDCl₃): δ 7.19 (d, J = 16.4 Hz, 1H, =CH), 7.28 (d, J = 16.4 Hz, 1H, =CH), 7.36 (m, 1H, ArH), 7.43 (t, J = 7.4 Hz, 2H, ArH), 7.57 (d, J = 7.2 Hz, 2H, ArH), 7.67 (d, J = 8.4 Hz, 2H, ArH), 8.26 (d, J = 8.8 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 124.1 (ArC), 126.3 (ArC), 126.8 (ArC), 127.0 (=CH or ArC), 128.8 (ArC), 128.9 (ArC), 133.3 (ArC), 136.2 (ArC), 143.8 (ArC), 146.8 (ArC).

COCH3

4-Acetylstilbene (3e)¹³

¹H NMR (400 MHz, CDCl₃): δ 2.63 (s, 3H, CH₃), 7.18 (d, J = 16.4 Hz, 1H, =CH), 7.24 (d, J = 16.4 Hz, 1H, =CH), 7.33 (q, J = 8.5 Hz, 1H, ArH), 7.41 (t, J = 7.6 Hz, 2H, ArH), 7.58 (d, J = 7.2 Hz, 2H, ArH), 7.62 (d, J = 8.4 Hz, 2H, ArH), 7.99 (d, J = 8.4 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 26.5 (CH₃), 126.4 (ArC), 126.8 (ArC), 127.4 (=CH or ArC), 128.3 (ArC), 128.7 (ArC), 128.8 (ArC), 131.4 (ArC), 135.9 (ArC), 136.6 (ArC), 141.9 (ArC), 197.4 (CO).

¹H NMR (400 MHz, CDCl₃): δ 7.14 (d, J = 16.0 Hz, 1H, =CH), 7.27 (t, J = 7.4 Hz, 1H, ArH), 7.37 (t, J = 7.6 Hz, 2H, ArH), 7.52 (m, 3H, =CH or ArH), 7.57 (d, J = 7.6 Hz, 2H, ArH), 7.70 (d, J = 7.2 Hz, 1H, ArH), 7.76 (d, J = 8.0 Hz, 1H, ArH), 7.84 (q, J = 7.2 Hz, 2H, ArH), 8.21 (d, J = 8.0 Hz, 1H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 123.5 (ArC), 123.7 (ArC), 125.6 (ArC), 125.7 (ArC), 125.8 (ArC), 126.0 (ArC), 126.6 (ArC), 127.7 (=CH or ArC), 128.0 (ArC), 128.5 (ArC), 128.7 (ArC), 131.3 (ArC), 131.7 (ArC), 133.6 (ArC), 134.9 (ArC), 137.5 (ArC).

1,4-Distyrylnaphthalene (**3g**)¹⁴

¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 16.0 Hz, 2H, =CH), 7.29 (t, J = 7.4 Hz, 2H, ArH), 7.39 (t, J = 7.6 Hz, 4H, ArH), 7.54 (q, J = 1.8 Hz, 2H, ArH), 7.59 (d, J = 7.2 Hz, 4H, ArH), 7.75 (s, 2H, ArH), 7.86 (d, J = 16.0 Hz, 2H, =CH), 8.26 (q, J = 3.2 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 123.5 (ArC), 124.3 (ArC), 125.7 (ArC), 126.0 (ArC), 126.6 (ArC), 127.7 (=CH or ArC), 128.7 (ArC), 131.5 (ArC), 134.8 (ArC), 137.6 (ArC).

4, 4'-Bis(2-phenylethenyl)-bipheny (**3h**)¹⁵

¹H NMR (400 MHz, CDCl₃): δ 7.16 (s, 2H, Ar*H*), 7.39 (m, 6H, =C*H* or Ar*H*), 7.43 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.55 (t, *J* = 11.2 Hz, 2H, =C*H* or Ar*H*), 7.62 (t, *J* = 6.0 Hz, 6H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 126.5 (Ar*C*), 126.6 (Ar*C*), 126.9 (Ar*C*), 127.2 (=*C*H or Ar*C*), 127.6 (=*C*H or Ar*C*), 127.7 (Ar*C*), 128.2 (Ar*C*), 128.3 (Ar*C*), 128.71 (Ar*C*), 128.78 (Ar*C*).

9, 10-Bis(2-phenylethenyl)-anthracene (**3i**)¹⁶

¹H NMR (400 MHz, DMSO- d_6): δ 7.40 (q, J = 2.2 Hz, 4H, ArH), 7.50 (t, J = 7.4 Hz, 4H, =CH or ArH), 7.58 (q, J = 3.4 Hz, 6H, ArH), 7.84 (d, J = 7.2 Hz, 4H, =CH or

Ar*H*), 8.40 (q, J = 3.3 Hz, 4H, Ar*H*). ¹³C NMR (100 MHz, DMSO- d_6): δ 119.0 (Ar*C*), 121.6 (Ar*C*), 122.3 (Ar*C*), 123.4 (Ar*C*), 123.6 (Ar*C*), 124.0 (Ar*C*), 124.9 (Ar*C*), 125.6 (Ar*C*), 127.3 (=*C*H or Ar*C*), 129.0 (Ar*C*), 131.5 (Ar*C*), 133.7 (Ar*C*), 136.2 (Ar*C*), 140.6 (Ar*C*), 140.8 (Ar*C*).

1-Nitro-2-(2-phenylethenyl)-stilbene $(3j)^{17}$

¹H NMR (400 MHz, CDCl₃): δ 7.16 (d, J = 16.4 Hz, 1H, =CH), 7.25 (d, J = 16.4 Hz, 1H, =CH), 7.33 (t, J = 7.2 Hz, 1H, ArH), 7.40 (t, J = 7.4 Hz, 2H, ArH), 7.54 (d, J = 7.2 Hz, 2H, ArH), 7.64 (d, J = 8.8 Hz, 2H, ArH), 8.21 (d, J = 8.8 Hz, 2H ArH). ¹³C NMR (100 MHz, CDCl₃): δ 124.3 (ArC), 127.2 (=CH or ArC), 129.0 (ArC), 130.4 (ArC), 130.7 (ArC), 132.2 (ArC), 133.7 (ArC), 136.2 (ArC), 136.3 (ArC), 143.7 (ArC).

OHĆ

2, 4-Dinitro-1-(2-phenylethenyl)-stilbene (3k)¹⁸

¹H NMR (400 MHz, CDCl₃): δ 7.40 (m, 2H, =C*H* or Ar*H*), 7.54 (m, 6H, =C*H* or Ar*H*), 8.04 (t, *J* = 4.2 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 121.2 (Ar*C*), 121.8 (Ar*C*), 126.1 (Ar*C*), 128.2 (=CH or Ar*C*), 128.4 (Ar*C*), 128.6 (Ar*C*), 128.7 (Ar*C*), 130.1 (Ar*C*), 131.6 (Ar*C*), 139.7 (Ar*C*), 140.2 (Ar*C*), 159.0 (Ar*C*).

2-(2-Phenylethenyl)-stilbene (3l)¹⁹

¹H NMR (400 MHz, CDCl₃): δ 7.06 (d, J = 16.4 Hz, 1H, =CH), 7.06 (d, J = 16.4 Hz, 1H, =CH), 7.16, (d, J = 8.0 Hz, 2H, ArH), 7.23 (t, J = 6.8 Hz, 1H, ArH), 7.34 (t, J = 7.6 Hz, 2H, ArH), 7.39 (d, J = 8.0 Hz, 2H, ArH), 7.48 (d, J = 7.6 Hz, 2H, ArH), 11.02 (s, 1H, CHO). ¹³C NMR (100 MHz, CDCl₃): δ 126.7 (=CH or ArC), 129.1 (ArC), 129.4 (ArC), 132.5 (ArC), 133.5 (ArC), 135.1 (ArC), 135.3 (ArC), 141.7 (ArC), 186.2 (CHO).

¹H NMR (400 MHz, CDCl₃): δ 7.19 (s, 2H, Ar*H*), 7.33 (t, *J* = 7.4 Hz, 2H, Ar*H*), 7.43

 OCH_3 1-(3-Methoxyphenyl) -2-phenylacetylene (**4b**)²¹

¹H NMR (400 MHz, CDCl₃): δ 3.85 (s, 3H), 6.94 (m, 1H, Ar*H*), 7.10 (q, *J* = 1.3 Hz, 1H, Ar*H*), 7.17 (t, *J* = 3.8 Hz, 1H, Ar*H*), 7.30 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.39 (m, 3H, Ar*H*), 7.57 (m, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 55.0 (*C*H₃), 88.4 (\equiv C), 88.9 (\equiv C), 111.4 (ArC), 113.4 (ArC), 119.0(ArC), 126.4 (ArC), 127.6 (ArC), 128.3 (ArC), 128.8 (ArC), 129.6 (ArC), 136.9 (ArC), 138.4 (ArC), 159.5 (ArC).

¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 2H, NH₂), 7.37 (m, 5H, ArH), 7.54 (q, J = 3.2 Hz,4H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 73.9 (=C), 81.5 (=C), 121.8 (ArC), 128.3 (ArC), 128.4 (ArC), 129.2 (ArC), 132.5 (ArC).

 $\underbrace{}_{1-(4-\text{Nitrophenyl}) - 2-\text{phenylacetylene}} (4d)^{23}$ ¹H NMR (400 MHz, CDCl₃); δ 7.43 (m, 3H, Ar*H*), 7.60 (q, *J* = 3.2 Hz, 2H, Ar*H*), 7.70 (d, *J* = 8.8 Hz, 2H, Ar*H*), 8.26 (d, *J* = 8.8 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 87.5 (=*C*), 94.7 (=*C*), 122.0 (Ar*C*), 123.6 (Ar*C*), 128.5 (Ar*C*), 129.2 (Ar*C*), 130.2 (Ar*C*), 131.8 (Ar*C*), 132.2 (Ar*C*), 146.9 (Ar*C*).

 \bigcirc - \bigcirc -

¹H NMR (400 MHz, CDCl₃): δ 2.61 (s, 3H, CH₃), 7.37 (t, J = 3.2 Hz, 3H, ArH), 7.56 (m, 2H, ArH), 7.62 (d, J = 8.4 Hz, 2H, ArH), 7.95 (d, J = 8.4 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 26.6 (CH₃), 88.6 (=C), 92.7 (=C), 122.7 (ArC), 128.2 (ArC), 128.4 (ArC), 128.8 (ArC), 131.72 (ArC), 131.76 (ArC), 136.2 (ArC), 197.2 (CO).

1-(2-Phenylethynyl)naphthalene (**4f**)²³

¹H NMR (400 MHz, CDCl₃): δ 7.43 (s, 4H, Ar*H*), 7.69 (d, *J* = 5.6 Hz, 4H, Ar*H*), 7.77 (s, 2H, Ar*H*), 8.51 (t, *J* = 2.6 Hz, 2H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 89.5 (=*C*), 96.8 (=*C*), 122.1 (Ar*C*), 126.2 (Ar*C*), 127.8 (Ar*C*), 128.5 (Ar*C*), 128.9 (Ar*C*), 131.6 (Ar*C*), 134.5 (Ar*C*), 137.7 (Ar*C*).

1, 4-Bis(2-phenylethynyl)-naphthalene (4g)²⁵

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.23 (s, 1H, Ar*H*), 7.44 (m, 2H, Ar*H*), 7.51 (m, 5H, Ar*H*), 7.75 (q, *J* = 3.2 Hz, 3H, Ar*H*), 7.81 (d, *J* = 3.3 Hz, 2H, Ar*H*), 7.88 (d, *J* = 10.8 Hz, 2H, Ar*H*), 8.48 (q, *J* = 3.2 Hz, 1H, Ar*H*). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 87.0 (=*C*), 96.2 (=*C*), 120.6 (Ar*C*), 122.0 (Ar*C*), 124.3 (Ar*C*), 126.2 (Ar*C*), 127.1 (Ar*C*), 128.1 (Ar*C*), 128.8 (Ar*C*), 128.9 (Ar*C*), 129.2 (Ar*C*), 129.9 (Ar*C*), 131.5 (Ar*C*), 132.2 (Ar*C*).

4, 4'-Bis(2-phenylethynyl)-1,1'-biphenyl (**4h**)²⁶ ¹H NMR (400 MHz,CDCl₃): δ 7.35 (d, *J* = 2.0 Hz, 2H, Ar*H*), 7.37 (q, *J* = 2.1 Hz, 2H, Ar*H*), 7.45 (s, 1H, Ar*H*), 7.47 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.54 (t, *J* = 1.8 Hz, 2H, Ar*H*), 7.56 (d, *J* = 3.2 Hz, 5H, Ar*H*), 7.58 (d, *J* = 2.0 Hz, 3H, Ar*H*), 7.61 (s, 1H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 89.1 (≡*C*), 90.3 (≡*C*), 93.5 (≡*C*), 103.6 (≡*C*), 121.9 (Ar*C*), 123.2 (Ar*C*), 126.8 (Ar*C*), 128.3 (Ar*C*), 128.5 (Ar*C*), 131.6 (Ar*C*), 131.9 (Ar*C*), 132.1 (Ar*C*).

9, 10-Bis(2-phenylethynyl)-anthracene (4i)²⁵

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.60 (m, 7H, Ar*H*), 7.64 (m, 2H, Ar*H*), 7.84 (q, *J* = 3.3 Hz, 3H, Ar*H*), 7.93 (q, *J* = 3.0 Hz, 3H, Ar*H*), 7.84 (q, *J* = 3.2 Hz, 3H, Ar*H*). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 85.7 (=*C*), 87.1 (=*C*), 117.5 (Ar*C*), 122.1 (Ar*C*), 126.8 (Ar*C*), 127.8 (Ar*C*), 128.6 (Ar*C*), 128.8 (Ar*C*), 128.9 (Ar*C*), 129.4 (Ar*C*), 131.2 (Ar*C*), 131.4 (Ar*C*), 131.5 (Ar*C*), 131.6 (Ar*C*).

¹H NMR (400 MHz, CDCl₃): δ 7.40 (m, Ar*H*), 7.57 (q, *J* = 3.0 Hz, 4H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 73.9 (\equiv *C*), 81.5 (\equiv *C*), 121.8 (Ar*C*), 128.4 (Ar*C*), 129.2 (Ar*C*), 132.5 (Ar*C*).

2, 4-Dinitro-1- (2-phenylethynyl) -acetylene (4k)²⁸

¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, J = 7.2 Hz, 5H, Ar*H*), 7.57 (d, J = 6.8 Hz, 3H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 73.9 (=*C*), 81.5 (=*C*), 121.8 (Ar*C*), 128.4 (Ar*C*), 129.2 (Ar*C*), 132.5 (Ar*C*).

2-(Phenylethynyl) benzaldehyde (41)²⁹

¹H NMR (400 MHz, CDCl₃): δ 7.36 (m, 3H, Ar*H*), 7.51 (q, *J* = 6.8 Hz, 5H, Ar*H*), 8.04 (d, *J* = 7.6 Hz, 1H, Ar*H*), 11.08 (s, 1H, C*H*O). ¹³C NMR (100 MHz, CDCl₃): δ 89.8 (=*C*), 92.2 (=*C*), 126.7 (Ar*C*), 128.4 (Ar*C*), 131.5 (Ar*C*), 132.4 (Ar*C*), 132.5 (Ar*C*), 133.5 (Ar*C*), 134.7 (Ar*C*), 136.7 (Ar*C*), 157.0 (Ar*C*), 193.3 (CHO).

2-Methylphenylacethylene (**4m**)³⁰

¹H NMR (400 MHz, CDCl₃): δ 1.56 (s, 3H, Ar*H*), 7.39 (m, 6H, Ar*H*), 7.56 (t, *J* = 4.0 Hz, 3H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 26.6 (CH₃), 88.6 (=*C*), 92.7 (=*C*), 122.7 (Ar*C*), 128.2 (Ar*C*), 128.4 (Ar*C*), 128.8 (Ar*C*), 131.72 (Ar*C*), 131.76 (Ar*C*), 136.2 (Ar*C*).

¹H NMR (400 MHz, CDCl₃): δ 7.27 (d, J = 3.6 Hz, 2H, Ar*H*), 7.37 (d, J = 8.0 Hz, 4H, Ar*H*), 7.54 (d, J = 7.8 Hz, 4H, Ar*H*). ¹³C NMR (100 MHz, CDCl₃): δ 83.8 (\equiv C), 125.6

(ArC), 127.2 (ArC), 128.1 (ArC), 128.3 (ArC), 128.9 (ArC), 131.9 (ArC), 137.7 (ArC).

5. The figures of ¹H NMR and ¹³C NMR spectra for all intermediates, precursor [(S)-LH₂]·(PF₆)₂, complex 1, and all coupling products in Suzuki-Miyaura, Heck-Mizoroki and Sonogashira reactions

Fig. S2 The ¹H NMR (400 MHz, CDCl₃) spectrum of (S)-2,2'-di(2'-hydroxyethoxy)-1,1'-binaphthyl.

Fig. S3 The ¹³C NMR (100 MHz, CDCl₃) spectrum of (S)-2,2'-di(2'-hydroxyethoxy)-

1,1'-binaphthyl.

Fig. S4 The ¹H NMR (400 MHz, CDCl₃) spectrum of (S)-2,2'-di(2'-chloroethoxy)-1,1'-binaphthyl

Fig. S5 The ¹³C NMR (100 MHz, CDCl₃) spectrum of (S)-2,2'-di(2'-chloroethoxy)-

1,1'-binaphthyl.

Fig. S6 The ¹H NMR (400 MHz, DMSO-d₆) spectrum of [(S)-LH₂]·(PF₆)₂.

Fig. S7 The ¹³C NMR (100 MHz, DMSO-d₆) spectrum of [(S)-LH₂]·(PF₆)₂.

Fig. S8 The ¹H NMR (400 MHz, DMSO-d₆) spectrum of 1.

Fig. S9 The 13 C NMR (100 MHz, DMSO-d₆) spectrum of 1.

Fig. S10 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-methoxybiphenyl (2a).

Fig. S11 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-methoxybiphenyl (2a).

Fig. S12 The ¹H NMR (400 MHz, CDCl₃) spectrum of 3-methoxybiphenyl (2b).

Fig. S13 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 3-methoxybiphenyl (2b).

Fig. S14 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-phenylaniline (2c).

Fig. S15 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-phenylaniline (2c).

Fig. S16 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-nitrobiphenyl (2d).

Fig. S17 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-nitrobiphenyl (2d).

Fig. S18 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-acetylbiphenyl (2e).

Fig. S19 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-acetylbiphenyl (2e).

Fig. S20 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-phenylnaphthalene (2f).

Fig. S21 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-phenylnaphthalene (2f).

Fig. S22 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1,4-diphenylnaphthalene (2g).

Fig. S23 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1,4-diphenylnaphthalene (2g).

Fig. S24 The ¹H NMR (400 MHz, DMSO- d_6) of 4, 4'-diphenylbiphenyl (2h).

Fig. S25 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of 4, 4'-diphenylbiphenyl (2h).

Fig. S26 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of 9,10-diphenylanthracene (2i).

Fig. S27 The ¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of 9,10-diphenylanthracene (2i).

Fig. S28 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2-nitrobiphenyl (2j).

Fig. S29 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-nitrobiphenyl (2j).

Fig. S30 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2,4-dinitrobiphenyl (2k).

Fig. S31 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2,4-dinitrobiphenyl (2k).

Fig. S32 The ¹H NMR (400 MHz, CDCl₃) spectrum of biphenyl-2-carbaldehyde (2l).

Fig. S33 The ¹³C NMR (100 MHz, CDCl₃) spectrum of biphenyl-2-carbaldehyde (2l).

Fig. S34 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2-methylbiphenyl (2m).

Fig. S35 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-methylbiphenyl (2m).

Fig. S36 The ¹H NMR (400 MHz, CDCl₃) spectrum of biphenyl (2n).

Fig. S37 The ¹³C NMR (100 MHz, CDCl₃) spectrum of biphenyl (2n).

Fig. S38 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-methylbiphenyl (20).

Fig. S39 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-methylbiphenyl (20).

Fig. S40 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-methoxystilbene (3a).

Fig. S41 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-methoxystilbene (3a).

Fig. S42 The ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of 3-methoxystilbene (3b).

Fig. S43 The 13 C NMR (100 MHz, DMSO- d_6) spectrum of 3-methoxystilbene (3b).

Fig. S44 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-anilinestilbene (3c).

Fig. S45 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-anilinestilbene (3c).

Fig. S46 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-nitrostilbene (3d).

Fig. S47 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-nitrostilbene (3d).

Fig. S48 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-acetylstilbene (3e).

Fig. S49 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-acetylstilbene (3e).

Fig. S50 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-styrylnaphthalene (**3f**).

Fig. S51 The ¹³C NMR (100 MHz, CDCl₃)spectrum of 1-styrylnaphthalene (3f).

Fig. S52 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1,4-distyrylnaphthalene (**3g**).

Fig. S53 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1,4-distyrylnaphthalene (3g).

Fig. S54 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4, 4'-bis(2-phenylethenyl)bipheny (**3h**).

Fig. S55 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4, 4'-bis(2-phenylethenyl)-bipheny (**3h**).

Fig. S56 The ¹H NMR (400 MHz, DMSO-*d*₆) spectrum of 9, 10-bis(2-phenylethenyl)-anthracene (**3i**).

Fig. S57 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of 9, 10-bis(2-phenylethenyl)-anthracene (**3i**).

Fig. S58 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-nitro-2-(2-phenylethenyl)-stilbene (**3j**).

Fig. S59 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-nitro-2-(2-phenylethenyl)-stilbene (**3j**).

Fig. S60 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2, 4-dinitro-1-(2-phenylethenyl)-stilbene (**3**k).

Fig. S61 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2, 4-dinitro-1-(2-phenylethenyl)-stilbene (**3**k).

Fig. S62 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2-(2-phenylethenyl)-stilbene (**31**).

Fig. S63 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-(2-phenylethenyl)-stilbene (**31**).

Fig. S64 The ¹H NMR (400 MHz, CDCl₃) spectrum of stilbene (3n).

Fig. S65 The ¹³C NMR (100 MHz, CDCl₃) spectrum of stilbene (3n).

Fig. S66 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-(4-Methoxyphenyl)-2-phenylacetylene (**4a**).

Fig. S67 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-(4-Methoxyphenyl)-2-phenylacetylene (**4a**).

Fig. S68 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-(3-Mmethoxyphenyl)-2-phenylacetylene (**4b**).

Fig. S69 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-(3-Mmethoxyphenyl)-2-phenylacetylene (**4b**).

Fig. S70 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4-(2-phenylethynyl)-aniline (4c).

Fig. S71 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4-(2-phenylethynyl)-aniline (**4c**).

Fig. S72 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-(4-nitrophenyl)-2-phenylacetylene (**4d**).

Fig. S73 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-(4-nitrophenyl)-2-phenylacetylene (**4d**).

Fig. S74 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-(4-acetylphenyl)-2-phenylacetylene (**4e**).

Fig. S75 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-(4-acetylphenyl)-2-phenylacetylene (**4e**).

Fig. S76 The ¹H NMR (400 MHz, CDCl₃) spectrum of 1-(2-phenylethynyl)naphthalene (**4f**).

Fig. S77 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 1-(2-phenylethynyl)naphthalene (**4f**).

Fig. S78 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of 1,4-bis(2-phenylethynyl)-naphthalene (**4g**).

Fig. S79 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of 1,4-bis(2-phenylethynyl)-naphthalene (**4g**).

Fig. S80 The ¹H NMR (400 MHz, CDCl₃) spectrum of 4,4'-bis(2-phenylethynyl)-1,1'biphenyl (**4h**).

Fig. S81 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 4,4'-bis(2-phenylethynyl)-1,1'-biphenyl (**4h**).

Fig. S82 The ¹H NMR (400 MHz, DMSO- d_6) spectrum of 9,10-bis(2-phenylethynyl)- anthracene (**4i**).

Fig. S83 The ¹³C NMR (100 MHz, DMSO- d_6) spectrum of 9,10-bis(2-phenylethynyl)-anthracene (**4i**).

Fig. S85 The ¹³C NMR (100 MHz, CDCl₃) spectrum of (2-nitrophenyl)phenylacetylene (**4j**).

Fig. S86 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2,4-dinitro-1-(2-phenylethynyl)-acetylene (**4k**).

Fig. S87 The ¹³C NMR (100 MHz, CDCl₃)spectrum of 2,4-dinitro-1-(2-phenylethynyl)-

(phenylethynyl)benzaldehyde (41).

Fig. S90 The ¹H NMR (400 MHz, CDCl₃) spectrum of 2-methylphenylacethylene (4m).

Fig. S91 The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2-methylphenylacethylene (**4m**).

Fig. S92 The ¹H NMR (400 MHz, CDCl₃) spectrum of diphenylacetylene (4n).

Fig. S93 The ¹³C NMR (100 MHz, CDCl₃) spectrum of diphenylacetylene (4n).

References

- E. Shirakawa, Y. Hayashi, K. Itoh, R. Watabe, N. Uchiyama, W. Konagaya, S. Masui and T. Hayashi, *Angew. Chem., Int. Ed.*, 2012, 51, 218.
- 2 M. Jin and D. Lee, Angew. Chem., Int. Ed., 2010, 49, 1119.
- 3 R. J. Lundgren, B. D. Peters, P. G. Alsabeh and M. Stradiotto, Angew. Chem., 2010, 122, 4165.
- 4 K. Dhara, K. Sarkar, D. Srimani, S. K. Saha, P. Chattopadhyay and A. Bhaumik, *Dalton Trans.*, 2010, **39**, 6395.
- 5 C. C. Price, H. M. Shafer, M. F. Huber and C. Bernstein, J. Org. Chem., 1942, 7, 517.
- 6 S. K. Taylor, S. G. Bennett, K. J. Heinz and L. K. Lashley, J. Org. Chem., 1981, 46, 2194.
- 7 C. F. Koelsch, J. Org. Chem., 1938, 3, 456.
- 8 M. Planellas, R. Pleixats and A. Shafir, Adv. Synth. Catal., 2012, 354, 651.

- 9 E. Shirakawa, X. J. Zhang and T. Hayashi, Angew. Chem., Int. Ed., 2011, 50, 4671.
- 10 E. M. Crompton and F. D. Lewis, Photochem. Photobiol. Sci., 2004, 3, 660.
- 11 T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685.
- 12 J. D. Senra, L. F. B. Malta, M. E. H. M. da Costa, R. C. Michel, L. C. S. Aguiar, A. B. C. Simas and O. A. C. Antunes, *Adv. Synth. Catal.*, 2009, **351**, 2411.
- 13 J. Z. Zhang, W. Q. Zhang, Y. Wang and M. Zhang, Adv. Synth. Catal., 2008, 350, 2065.
- 14 V. K. Chaikovskii, A. N. Novikov and T. A. Sarycheva, Zh. Org. Khim., 1985, 21, 1947.
- 15 L. Q. You, H. Y. Wang and P. Lu, Ying Yong Hua Gong, 2008, 37, 121.
- 16 T. Nakaya, T. Tomomoto and M. Imoto, Bull. Chem. Soc. Jpn., 1966, 39, 1551.
- 17 P. Ruggli, Helvetica Chim. Acta, 1937, 20, 37.
- 18 E. Rafiee, A. Ataei, S. Nadri, M. Joshaghani and E. Sara, *Inorg. Chim. Acta*, 2014, 409, 302.
- 19 W. Zhang, F. Ning, L. Váradi, D. E. Hibbs, J. A. Platts, M. Nyerges, R. J. Anderson, and W. Paul, *Tetrahedron*, 2014, **70**, 3621.
- 20 F. Yang and Y. J. Wu, Eur. J. Org. Chem., 2007, 21, 3476.
- 21 H. Kim and P. H. Lee, Adv. Synth. Catal., 2009, 351, 2827.
- 22 C. H. Lin, Y. J. Wang and C. F. Lee, Eur. J. Org. Chem., 2010, 23, 4368.
- 23 H. F. Chow, C. W. Wan, K. H. Low and Y. Y. Yeung, J. Org. Chem., 2001, 66, 1910.
- 24 N. Kakusawa, K. Yamaguchi and J. Kurita, J. Organomet. Chem., 2005, 690, 2956.
- 25 D. P. Lydon, L. Porres, A. Beeby, T. B. Marder and P. J. Low, *New J. Chem.*, 2005, 29, 972.
- 26 D. Kang, D. Eom, H. Kim and P. H. Lee, Eur. J. Org. Chem., 2010, 12, 2330.
- 27 M. J. Jin and D. H. Lee, Angew. Chem., Int. Ed., 2010, 49, 1119.
- 28 B. Prüger, G. E. Hofmeister, C. B. Jacobsen, D. G. Alberg, M. Nielsen and K. A. Jørgensen, *Chem. Eur. J.*, 2010, 16, 3783.
- 29 C. J. Charles, J. B. Loh, R. Gerhard and E. Dieter, Chem. Eur. J., 2011, 17, 13409.

30 Y. Lee, M. C. Hong, H. Ahn, J. Yu and R. Hakjune, J. Organomet. Chem., 2014, 769, 80.