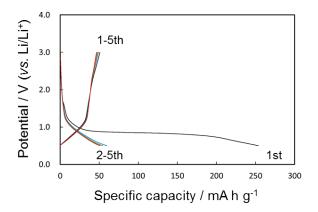
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015


Application of Biogenic Iron Phosphate for Lithium-Ion Batteries

Hiroyuki Kageyama, ^a Yasuo Hashimoto, ^a Yuya Oaki, ^a Siro Saito, ^b Yasuhiro Konishi, ^c and Hiroaki Imai ^{a*}

^a Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522 Japan.

*Fax: +81455661551; Tel: +81455661556; E-mail: hiroaki@applc.keio.ac.jp

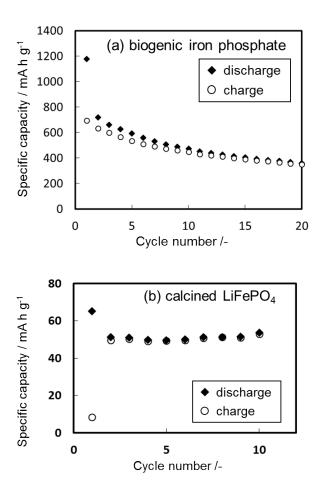

†Electronic supplementary information (ESI): Figure S1 and S2

Figure S1. Charge–discharge curves of acetylene black and PTFE (90: 10 weight ratio) on Cu mesh at 50 mA h g⁻¹ (for all weight). Counter and reference electrode were metal lithium on Cu mesh.

^b Aisin Seiki Co., Ltd, 2-1, Asahi-machi, Kariya, Aichi, 448-8650 Japan

^c Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

Figure S2. Charge–discharge capacity retention of the biogenic iron (II) phosphate at 50 mA g⁻¹ (a) and the calcined LiFePO₄ particles at 10 mA g⁻¹ (b). The active material, acetylene black, and PTFE were mixed for 50:45:5 in weight.