Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis and study of hybrid hydrogen-bonded bent-core liquid crystal complexes containing C_{60} - and Si-based proton donors

Shih-Hsien Liu, Chong-Lun Wei, I-Hung Chiang,^a Chun-Yen Liao,^a Chinmayananda Gouda,^a Reguram

Arumugaperumal,^a Wei-Tsung Chuang,^b Jey-Jau Lee,^b Yu-Chie Chen^c and Hong-Cheu Lin*^a

^aDepartment of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30049, Taiwan ^bNational Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan ^cDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu 30049, Taiwan

Contents

1.	Synthesis Sectionpage S	2
2.	Fig. S1	page \$10
3.	Fig. S2	page S11
4.	Fig. S3	page S12
5.	Fig. S4	page S13
6.	Fig. S5	page S14
7.	Fig. S6	page S14
8.	Fig. S7	page S15
9.	Fig. S8	page S16
10.	Fig. S9	page S18
11.	Fig. S10	page S19
12.	Fig. S11	page S23
13.	Fig. S12	page S24
14.	Fig. S13	page S15
15.	Table S1	page S25
16.	Table S2	page S26
17.	References	page S27

Reagents and conditions: (a) HBr, toluene, reflux, 24 h; (b) DIAD, PPh₃, THF, 0°C, 1 h, then r.t., 24 h; (c) (1) K_2CO_3 , acetonitrile, reflux, 8 h (2) HCl; (d) C_{60} , chlorobenzene, reflux 24 h; (e) HCOONH₄, MeOH-THF

B. Synthesis of FIIA

Reagents and conditions: (a) HBr, toluene, reflux, 24 h; (b) K_2CO_3 , acetone, reflux, 24 h; (c) DMAP, CH_2Cl_2 , r.t., 2 h; (d) C_{60} , DBU, I_2 , toluene, r.t., 10 mins; (e) HCOONH₄, MeOH-THF

C. Synthesis of IIA

Reagents and conditions: (a) Pd/C (10%) H_2

D. Strcuture of SiA

E. Streuture of NBF14

NBF14

Scheme S1. Synthesis of FIA, FIIA and IIA as well as the structures of SiA and NBF14.

A. Synthesis of **FIA**

Synthesis of 12-Bromododecan-1-ol, (1-1). Into a 250 mL double necked flask, 1,12-Dodecanediol (7.5 g, 37.06 mmol) was dissolved in dry toluene (150 mL). The system was added with 48% HBr (5.07 mL HBr, 44.48 mmol) at 115°C and refluxed overnight. After completing the reaction checked with TLC plates, water was used to the extraction of organic part. After removing water by using MgSO₄, solvent was removed by evaporation under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/EtOAc) to afford **1-1** as a light yellow liquid. Yield: 80%. ¹H NMR (300 MHz,

CDCl₃) δ (ppm): 3.67 (t, *J* = 6.5 Hz, 2H), 3.42 (t, *J* = 7.0 Hz, 2H), 1.81–1.91 (m, 2H), 1.53–1.61 (m, 2H), 1.25– 1.48 (m, 16H)

Synthesis of Benzyl 4-((12-bromododecyl)oxy)benzoate, (1-2). Into a Into a 250 mL double necked flask, 1-1 (5.578 g, 21.03 mmol), benzyl 4-hydroxybenzoate (4 g, 17.52 mmol) and triphenyl phosphine (6.908 g, 26.29 mmol) were pre-vacuumed for about an hour then pumped at least three times in gaseous nitrogen. Dry THF (100 mL) and DIAD (5.315 g, 26.29 mmol, at ice bath condition) were injected into the flask and stirred for 24 h at room temperature. After completing the reaction checked with TLC plates, the residue was washed with CH_2Cl_2 , and water was used to the extraction of organic part. After removing water by using $MgSO_4$, solvent was removed by evaporation under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/ CH_2Cl_2) to afford **1-2** as a white liquid. Yield: 78%. ¹H NMR (300 MHz, DMSO) δ (ppm): 7.90 (d, *J* = 7.2 Hz, 2H), 7.40–7.30 (m, 5H), 7.01 (d, *J* = 7.2 Hz, 2H), 5.29 (s, 2H), 4.01 (t, *J* = 6.3 Hz, 2H), 3.24 (t, *J* = 6.9 Hz, 2H), 1.73–1.67 (m, 4H), 1.38–1.23 (m, 16H)

Synthesis of Benzyl 4-((12-(4-formylphenoxy)dodecyl)oxy)benzoate, (1-3). Into a double neck bottle (500 mL), 4-hydroxybenzaldehyde (0.81 g, 6.64 mmol) was stirred and dissolved in acetonitrile (200 mL). K_2CO_3 (2.5 g, 18.1 mmol) and KI of minute quantity were added in the solution and refluxed at 90°C. Solution of 1-2 (10.70 g, 22.5 mmol) into acetonitrile (100 mL) was dropped into the double neck flask slowly and reacted for at least eight hours. Furthermore, TLC plates were used to determine the reaction was complete. After cooling to room temperature, the mixture was added with HCI (aquareous) until pH value about 2 ~ 3. After removal of the solvent by evaporation under reduced pressure, the residue was extracted with water and EtOAc. Then, the organic layer was dried over anhydrous MgSO₄ After removal of the solvent by evaporation under reduced pressure, the residue was purified by silica gel column chromatography (*n*-hexane/EtOAc) to afford **1-3** as a white solid. Yield: 82%. ¹H NMR (300 MHz, DMSO) δ (ppm): 9.83 (s, 1H), 7.91 (d, *J* = 8.7 Hz, 2H), 7.83 (d, *J* = 8.7 Hz, 2H), 7.40–7.30 (m, 5H), 7.09 (d, *J* = 8.7 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 2H), 5.29 (s, 2H), 4.08–3.99 (m, 4H), 1.73–1.67 (m, 4H), 1.38–1.23 (m, 16H)

Synthesis of Benzyl4-((12-(4-(1-methylfulleropyrrolidin-2-yl)phenoxy)dodecyl)oxy)benzoate, (1-4). Into a

500 mL round bottom flask, C_{60} (0.32 g, 0.445 mmol) stirred and dissolved in chlorobenzene (300 mL). **1-3** (0.15 g, 0.295 mmol) and N-methylglycine (0.04 g, 0.445 mmol) were added into the flask. After refluxing at 135°C for 12 hours, TLC plates were used to make sure the reaction was complete. After cooling to rom temperature, solvent was removed by evaporation under reduced pressure. Then the residue was purified by silica gel column chromatography (*n*-hexane/toluene) to afford **1-4** as a brown solid. Yield: 40%.

Synthesis of 4-((12-(4-(1-methylfulleropyrrolidin-2-yl)phenoxy)dodecyl)oxy)benzoic acid, (FIA). Into a double neck bottle (500 mL), 1-4 (0.1 g, 7.9×10^{-2} mmol) was pre-vacuumed for about an hour then pumped at least three times in nitrogen. THF (100 mL), 10% Pd-C (10 mg, work as catalyst), toluene (dried, 20 mL) and HCOONH₄ (0.015 g, 0.24 mmol) were added in the flask. The mixture was stirred at 60°C for 2 hours. Then the TLC plates were used to make sure the reaction was complete. THF was used to wash the residue. After being concentrated and dried, the mixture was recrystallized by THF/*n*-hexane to afford **FIA** as a brown solid. Yield: 65%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.00 (d, *J* = 9.0 Hz, 2H), 7.40 (m, 4H), 6.88 (d, 2H), 4.96 (d, *J* = 9.0 Hz, 1H), 4.87 (s, 1H), 4.22 (d, *J* = 9.0 Hz, 1H), 4.01-3.92 (m, 4H), 2.78 (s, 3H), 1.75 (m, 4H), 1.36-1.23 (m, 16H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 26.26, 29.38, 29.84, 30.60, 34.49, 40.29, 66.61, 68.23, 68.48, 70.22, 114.37, 114.81, 122.50, 124.73, 128.35, 128.95, 136.08, 139.83, 140.16, 140.41,

141.79, 141.94, 142.08, 142.25, 143.4, 144.65, 144.87, 144.97, 145.39, 145.52, 145.59, 145.76, 146.03, 146.38, 146.46, 146.55, 147.07, 147.33, 147.55, 159.44, 163.32, 166.49. Anal. Calcd for $C_{88}H_{39}NO_4$: C, 90.01; H, 3.35; N, 1.19. Found: C, 90.58; H, 2.86; N, 0.99 (similar to the previous report,¹ the elemental analysis deviates by more than 0.5 % may resulted from difficult purification due to the high polarity of C_{60} -based molecules). MS (FAB-) m/z: 1173.3 (M); found, 1174.6

B. Synthesis of FIIA

Synthesis of Benzyl 4-((12-hydroxydodecyl)oxy)benzoate, (2-1). Into a double neck bottle (500 mL), benzyl 4-hydroxybenzoate (6.00 g, 26.3 mmol) was stirred and dissolved in acetone (200 mL). K₂CO₃ (9 g, 65.7 mmol) and KI of minute quantity were added in the solution and refluxed at 70°C. Solution of 1-1 (8.364 g, 31.5 mmol) into acetone (100 mL) was dropped into the double neck flask slowly and reacted for at least 12 hours. TLC plates were used to make sure the reaction was complete. After cooling to room temperature, the solvent was removed by evaporation under reduced pressure, and the residue was extracted with water and EtOAc, then, the organic layer was dried over anhydrous MgSO₄. After being concentrated and dried, the mixture was purified by silica gel column chromatography (*n*-hexane/EtOAc) to afford 2-1 as a white solid. Yield: 92%. ¹H NMR (300 MHz, DMSO) δ (ppm): 7.91 (d, *J* = 8.7 Hz, 2H), 7.40–7.30 (m, 5H), 7.01 (d, *J* = 8.7 Hz, 2H), 5.29 (s, 2H), 4.01 (t, *J* = 6.6 Hz, 2H), 3.30 (m, 2H), 1.73–1.61 (m, 4H), 1.38–1.13 (m, 16H)

Synthesis of Bis(12-(4-((benzyloxy)carbonyl)phenoxy)dodecyl) malonate, (2-2). Into a round bottle (500 mL), 2-1 (0.52 g, 1.25 mmol), DMAP (0.15 g, 1.25 mmol, catalyst) and CH₂Cl₂ (dried, 100 mL) were stirred

and dissolved well; and malonyl dichloride (0.061 mL, 0.62 mmol) was dropped slowly into the flask. The mixture was reacted for two hours at room temperature. The solvent was removed by evaporation under reduced pressure, and the mixture was purified by silica gel column chromatography (*n*-hexane/CH₂Cl₂) to afford **2-2** as a white solid. Yield: 78%. ¹H NMR (300 MHz, DMSO) δ (ppm): 7.90 (d, *J* = 9.0 Hz, 4H), 7.50–7.30 (m, 10H), 7.01 (d, *J* = 9.0 Hz, 4H), 5.29 (s, 4H), 4.04–3.96 (m, 8H), 3.45 (s, 2H), 1.75–1.58 (m, 4H), 1.56–1.44 (m, 4H), 1.42–1.10 (m, 32H)

Synthesis of Bis(12-(4-((benzyloxy)carbonyl)phenoxy)dodecyl)(1,2-methanofullerene C60)-61,61malonate, (2-3). Into a 500 mL round bottom flask, C₆₀ (0.57 g, 79 mmol) was pre-vacuumed for about an hour then pumped at least three times in nitrogen. 2-2 (0.47 g, 0.53 mmol), I₂ (0.13 g, 0.53 mmol) and toluene (dried, 300 mL) were added and stirred to dissolve into the flask. After stiring for 10 minutes, 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, catalyst, 0.8 mL, 5.3 mmol) was injected into the flask in nitrogen. After stirring for 10 minutes, the residue was washed by water for three times, and the organic layer was dried over anhydrous MgSO₄. After being concentrated and dried, the mixture was purified by silica gel column chromatography (toluene/EtOAc) to afford 2-3 as a black brown gel. Yield: 35%.

Synthesis of 4,4'-(((malonylbis(oxy))bis(dodecane-12,1-diyl))bis(oxy))(1,2-methanofullerene C60)-61,61dibenzoic acid, (FIIA). Into a double neck bottle (500 mL), 2-3 (0.5 g, 0.31 mmol) was pre-vacuumed for about an hour then pumped at least three times in nitrogen. THF (100 mL), 10% Pd-C (catalyst, 50 mg), toluene (dried, 20 mL) and HCOONH₄ (0.03 g, 0.48 mmol) were added in the flask. The mixture was stirred at 60°C for 2 hours. Then the TLC plates were used to make sure the reaction was complete. THF was used to wash the residue. After being concentrated and dried, the mixture was recrystallized by THF/*n*-hexane to afford **FIIA** as a brown solid. Yield: 50%. ¹H NMR (300 MHz, CDCl₃) δ (ppm):7.96 (d, *J* = 9.0 Hz, 4H), 6.90 (d, *J* = 8.8 Hz, 4H), 4.47 (m, *J* = 6.6 Hz, 4H), 4.01 (t, *J* = 6.6 Hz, 4H), 1.89 (m, 8H), 1.43–1.29 (m, 32H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) = 26.01, 28.52, 29.13, 29.21, 29.40, 29.58, 67.31, 68.18, 114.05, 122.30, 131.55, 138.50, 138.59, 138.67, 139.12, 139.13, 139.18, 140.13, 140.34, 141.02, 141.20, 141.54, 141.84, 142.05, 142.32, 142.51, 142.85, 143.02, 143.36, 143.57, 144.01, 144.34, 144.58, 145.09, 145.11, 145.28, 145.37, 145.54, 146.02, 146.15, 146.45, 146.93, 147.21, 147.68, 162.93, 166.89. Anal. Calcd for C₁₀₁H₅₈O₁₀: C, 84.74; H, 4.08. Found: C, 85.33; H, 4.55 (similar to the previous report,¹ the elemental analysis deviates by more than 0.5 % may resulted from difficult purification due to the high polarity of C₆₀-based molecules). MS (FAB+) *m/z*: 1430.4 (M); found, 1431.1.

C. Synthesis of IIA

Synthesis of 4,4'-(((malonylbis(oxy))bis(dodecane-12,1-diyl))bis(oxy))dibenzoic acid, (IIA). Into a double neck bottle (500 mL), 2-2 (5.00 g, 7.01 mmol), THF (200 mL), 10% Pd-C (catalyst, 2.5 g) were mixed and stirred overnight. TLC plates were used to make sure the reaction was finished. The residue was washed with CH₂Cl₂. After being concentrated and dried, the mixture was recrystallized by CH₂Cl₂/*n*-hexane to afford IIA as a white solid. Yield: 95%. ¹H NMR (300 MHz, DMSO-d₆) δ (ppm) = 7.85 (d, *J* = 9.0 Hz, 4H), 6.97 (d, *J* = 8.7 Hz, 4H), 4.05–3.97 (m, 8H), 3.46 (s, 2H), 2.11–2.00 (m, 8H). 1.80–1.50 (m, 8H), 1.45–1.30 (m, 24H) Anal. Calcd for C₄₁H₆₀O₁₀: C, 69.07; H, 8.48. Found: C, 68.77; H, 8.41.

D. Structure of 4-(Dimethylethylsiloxyl) undecyloxybenzoic acid, (SiA)

The H-donor **SiA** was synthesized and reported in the reference,² ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.05 (d, *J* = 9.0 Hz, 2H), 6.95 (d, *J* = 9.0 Hz, 2H), 4.05 (t, *J* = 6.6 Hz, 2H), 1.81 (m, 2H),1.52–1.32 (m, 16H), 0.92 (t, *J* = 8.1 Hz, 3H), 0.48 (t, *J* = 7.8 Hz, 4H), 0.01 (s, 6H). Anal. Calcd for C₂₂H₃₈O₃Si : C, 69.79; H, 10.12. Found: C, 69.62; H, 10.05.

E. Structure of 3'-(4-(2,3-Difluoro-4-(tetradecyloxy)benzoyloxy)benzoyloxy)biphenyl-4-yl isonicotinate,
 (NBF14).

The steps of H-acceptor **NBF14** was reported in the reference,³ ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.87 (d, 2H), 8.29 (d, *J* = 8.3 Hz, 2H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.86 (m, 1H), 7.67 (d, *J* = 8.2 Hz, 2H), 7.54 (d, *J* = 4.7 Hz, 2H), 7.46 (s, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.7 Hz, 2H), 7.23–7.19 (m, 1H), 6.89–6.82 (m, 1H), 4.10 (t, *J* = 6.3 Hz, 2H), 1.80–1.75 (m, 2H), 1.43–1.28 (m, 22H), 0.86 (t, *J* = 6.3 Hz, 3H). Anal. Calcd for $C_{46}H_{47}F_2NO_7$: C, 72.33; H, 6.20; N, 1.83. Found: C, 72.15; H, 6.42; N, 1.83.

Fig. S1 ¹H NMR spectrum of FIA in CDCl₃.

Fig. S2 (a) full and (b) expanded ¹³C NMR spectra of FIA in CDCl₃.

Fig. S3 ¹H NMR spectrum of FIIA in CDCl₃.

(b)

Fig. S4 (a) full and (b) expanded 13 C NMR spectra of FIIA in CDCl₃.

Fig. S5 Mass spectrum of FIA.

Fig. S6 Mass spectrum of FIIA.

Fig. S7 Setup for spontaneous polarization measurement.

Fig. S8 FT-IR spectra recorded for (a) pure proton acceptor **NBF14**, (b) pure proton donor **FIIA**, (c) pure proton donor **SiA**, and (d) H-bonded complex **FIIA50** at room temperature, (e) H-bonded complex **FIIA50** in the SmCP phase at 95°C and (f) in the isotropic state at 125 °C. (cooling from the isotropic state).

The existence of hydrogen bonds in the mesophases can be confirmed by temperature-various FTIR spectroscopy. Therefore, the IR spectra of proton acceptor **NBF14**, proton donors **FIIA** and **SiA**, and H-bonded complex **FIIA50** at room temperature are shown in Fig. S2, which are compared to analyze the formation of hydrogen bonds. In contrast to the O-H bands of pure proton donor (H-bonded dimer) **SiA** at 2660 and 2550 cm⁻¹ (similar to proton donor **FIIA**), the weaker O-H bands observed at 1925 and 2500 cm⁻¹ in H-bonded complex **FIIA50** are indicative of stronger hydrogen bonding between the pyridyl groups of proton acceptor **NBF14** and the carboxylic acids of proton donors **FIIA** and **SiA** in the H-bonded complex **FIIA50**. On the other hand, a stretching vibration of C=O at 1685 cm⁻¹ in pure proton donor **SiA** is shifted

toward higher wavenumber and overlapped with the band of the ester carbonyl group at 1727 cm⁻¹ in Hbonded complex **FIIA50**, which shows that the carbonyl group was in a less associated state than that in the pure H-bonded dimer state of proton donor **SiA**. These results suggest that hydrogen bonds were formed between proton acceptor **NBF14** and proton donors **FIIA** and **SiA** in the solid state of H-bonded complex **FIIA50**. In addition, when cooling from the isotropic state to the SmCP phase at 95°C, two broad O-H bands centered at 2660 and 2550 cm⁻¹ still persist due to the stable H-bands. These consequences show that hydrogen bonds were formed between proton acceptor **NBF14** and proton donors **FIIA** and **SiA** in the SmCP phase. The characteristic bands centered at 1920 cm⁻¹ and 2500 cm⁻¹ were observed to become broader and weaker in the isotropic state.

Fig. S9 POM images obtained upon cooling from the isotropic phase: (a) the schlieren and fan-shaped textures of **SiA100** in the SmCP_A phase at 105°C, (b) the schlieren texture of **IIA100** in the SmC phase at 126.5°C and (c), (d) the fan-shaped and non-specific grainy textures of the SmCP_A phase in **FIA4** at 100°C and **FIIA4** at 105°C, respectively, (e) **FIA24** at 103°C, (f) **FIIA24** at 99°C and (g) **FIA90** obtained in the SmCP_F phase at 75°C.

Fig. S10 POM images of the birefringent fan-shaped texture obtained in the SmCP_A and SmCP_F phases of **FIA24** and **FIA76**, respectively, under a triangular-wave electric field (frequency of 50 Hz) at 90 °C (cooling). **FIA24**: (a) 11V/ μ m, (b) 0 V/ μ m, **FIA76**: (c) 23 V/ μ m, (d) 0 V/ μ m. (non-rubbed LC cells with a 9 μ m cell gap).

(b)

S20

(a)

S22

Fig. S11 DSC thermograms obtained during the the 2nd heating (top) and 1st cooling (bottom) scans at a rate of 5°C/min: (a) **FIA** (b) **SiA** (c) **SiA100**, (d) **IIA100**, (e) **FIA4**, (f) **FIIA4** and (g) **FIA90**.

Fig. S12 Detailed switching current responses to the applied triangular waveform in the mesomorphic phases of **FIA24** (SmCP_A) and **FIA76** (SmCP_F).

Fig. S13 Spontaneous polarization values vs. applied electric field of (a) FIAx and (b) FIIAx series.

Table S1 Blending ratios of (a) FIAx and (b) FIIAx series

(a)

	FIA	SiA	NBF14	X	wt%
FIA100	100 mol%		100 mol%	100	100
FIA90	90 mol%	10 mol%	100 mol%	90	94
FIA76	76 mol%	24 mol%	100 mol%	76	84
FIA50	50 mol%	50 mol%	100 mol%	50	63
FIA24	24 mol%	76 mol%	100 mol%	24	35
FIA4	4 mol%	96 mol%	100 mol%	4	7

(b)

		FIIA	SiA	NBF14	х	wt%
F	IIA100	50 mol%		100 mol%	100	100
F	FIIA90	45 mol%	10 mol%	100 mol%	90	92
F	IIA76	38 mol%	24 mol%	100 mol%	76	80
F	TIA50	25 mol%	50 mol%	100 mol%	50	56
F	TIIA24	12 mol%	76 mol%	100 mol%	24	29
]	FIIA4	2 mo1%	96 mol%	100 mol%	4	5

Compound	Miller index	Q space/nm ⁻¹	d-spacing/nm	Theoretical length/nm	Tilt angle/°
FIA100				7.6	
	(01)	1.263	4.975	6.5	40.1
SiA100	(02)	2.541			
	(03)	3.817			
FIIA100				7.4	
IIA100	(01)	1.203	5.223	6.6	37.7
	(01)	1.257	4.999		
FIA4	(02)	2.535			
	(03)	3.798			
	(01)	1.273	4.936		
FIA24	(02)	2.545			
	(03)	3.844			
	(01)	1.314	4.782		
FIA50	(02)	2.633			
	(03)	3.947			
	(01)	1.317	4.771		
FIA76	(02)	2.641			
	(03)	3.978			
	(01)	1.355	4.637		
FIA90	(02)	2.742			
	(03)	4.057			
	(01)	1.257	4.999		
FIIA4	(02)	2.525			
	(03)	3.803			
	(01)	1.278	4.916		
FIIA24	(02)	2.568			
	(03)	3.863			
	(01)	1.310	4.796		
FIIA50	(02)	2.628			
	(03)	3.946			
	(01)	1.312	4.789		
FIIA76	(02)	2.625			
	(03)	3.950			
	(01)	1.314	4.782		
FIIA90	(02)	2.635			
	(03)	3.961			

Table S2 Crystallographic parameters of synthesized compounds and hybrid complexes

References:

- J. Vergara, J. Barbera, J. Luis Serrano, M. Blanca Ros, N. Sebastian, R. de la Fuente, D. O. Lopez,
 G. Fernandez, L. Sanchez and N. Martin, *Angew. Chem.-Int. Edit.*, 2011, 50, 12523-12528.
- 2 W.-H. Chen, Y.-T. Chang, J.-J. Lee, W.-T. Chuang and H.-C. Lin, *Chem.-Eur. J.*, 2011, **17**, 13182-13187.
- 3 W.-H. Chen, W.-T. Chuang, U. S. Jeng, H.-S. Sheu and H.-C. Lin, *J. Am. Chem. Soc.*, 2011, **133**, 15674-15685.