Supplemental information

Catalytic dehydration of D-xylose to furfural over a tantalum-based

catalyst in batch and continuous process

Xing-Long Li[§] ^a, Tao Pan[§] ^b, Jin Deng^b, Yao Fu^{*} ^b and Hua-Jian Xu^{*} ^a

^a School of Medical Engineering, and Key Laboratory of Advanced Functional Materials and

Devices, Hefei University of Technology, Hefei 230009, China.

^b University of Science and Technology of China, Hefei 230026, China.

§ : These authors contributed to the work equally and should be regarded as co-first authors.

* ^a Corresponding author: Hua-Jian Xu

E-mail: <u>hjxu@hfut.edu.cn</u> Fax: (+86)-551-62904405

* ^b Corresponding author: Yao Fu

E-mail: fuyao@ustc.edu.cn Fax: (+86)-551-63606689

Fig S1. XRD patterns of the TA-p catalyst at different calcination temperature

Fig S2. TG-DSC curve of the TA-p-300 catalyst

Fig S3. FTIR spectra of the TA and TA-p-300 catalyst

4 mL of water and 6 mL of organic solvent, 160 °C, 3 h.

Table S1. The effect of NaCl on the BE	T surface area and the acid density	of catalyst. ^a
--	-------------------------------------	---------------------------

Entry	Catalyst	BET /m ² ·g ⁻¹	Acid density /mmol·g ⁻¹
1 ^b	TA-p-300	139.6	1.6
2 ^c	TA-p-300	132.5	1.5
3 ^d	TA-p-300	120.3	1.2

^a Acid density was measured by NH₃-TPD.

^b The catalyst was freshly prepared.

^c The catalyst was collected and dried at 110 °C after reaction without adding of NaCl. Reaction condition: 0.4 g of D-xylose, 400 mg of catalyst, 4 mL of water and 6 mL of MIBC, 160 °C, 3 h.

^d The catalyst was collected and dried at 110 °C after reaction with adding of NaCl. Reaction condition: 0.4 g of Dxylose, 0.4 g of NaCl, 400 mg of catalyst, 4 mL of water and 6 mL of MIBC, 160 °C, 3 h.

Table S2. The effect of single-phase solvent system on the conversion of D-xylose to furfural.

Entry	Catalyst	Solvent	Conversion of D- xylose (%)	Yield of furfural (%)
1	TA-p-300	Water	80.2	28.5
2	TA-p-300	1-butanol	63.5	16.7

Reaction condition: 0.4 g of D-xylose, 400 mg of catalyst, 160 °C, 3 h.