Supporting information

for

Construction of Spirocycles Containing Highly Substituted Pyrrolidine and 1-Indanone Motifs with Spiro Quaternary Stereogenic Centers via 1,3-Dipolar Cycloaddition of 2-Alkylidene-1-Indanone and Azomethine Ylides Promted by Simple Imidazolium Salts

Wei-Qiang Hu,^a Yan-Su Cui,^{a,b} Zhi-Jun Wu,^c Chuan-Bao Zhang,^a Pei-Hao Dou,^a Song-Yang Niu,^a Ji-Ya Fu^a and Yong Liu^a*

CONTENTS

2 General procedure for 2-Alkylidene-1-Indanone with Azomethine	Ylides
Promted by Imidazolium Salts	S2

^a Institute of Fine Chemistry and Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China), E-mail: liuyong79@126.com, fujiya@126.com.

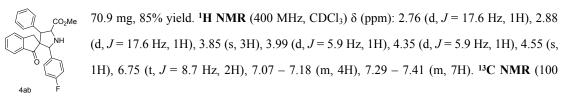
^b This author contributed equally to this work

^cChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China).

General information

All reagents were obtained from commercial supplier without further purification. Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). NMR spectra were recorded with tetramethylsilane as the internal standard. 1 H NMR spectra were recorded at 400 MHz, and 13 C NMR spectra were recorded at 100 MHz (Bruker Avance). Chemical shifts (δ) are reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) for 1 H NMR and relative to the central CDCl₃ resonance (δ = 77.0 ppm) for 13 C NMR spectroscopy. The following abbreviations were used to describe peak patterns where appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants were reported in Hertz (Hz). Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. Reactions were monitored by TLC and visualized with ultraviolet light.

General procedure for 2-Alkylidene-1-Indanone with Azomethine Ylides Promted by Imidazolium Salts.


Typical experimental procedure for the Methyl 1-oxo-2',4'-diphenyl-1,3-dihydrospiro [indene-2,3'-pyrrolidine]-5'-carboxylate (4aa): A stirred solution of 2-alkylidene-1-indanone (**1a**, 0.20 mmol, 1.0 equiv), azomethine ylide (**2a**, 0.2 mmol, 1.0 equiv) and catalyst **3g** (20 mmol%) in CH₃CN (1.0 mL) was stirred at 40 °C. After the 2-alkylidene-1-indanone was consumed as indicated monitored by TLC, the reaction solution was added H₂O (20 mL), then extracted with CH₂Cl₂ (25 mL×3). The organic phase was dried with anhydrous MgSO₄, filtered and concentrated *in-vacuo*. The residue was purified by column chromatography on silica gel (eluent PE: EtOAc = 200:1 to 40:1) to afford pure products **4aa**. All known products were identified by spectroscopic data (¹H NMR) which are in good agreement with those reported. [6]

Methyl-1-oxo-2',4'-diphenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4aa):

79.0 mg, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 2.79 (d, J = 17.6 Hz, 1H), 2.88 (d, J = 17.6 Hz, 1H), 3.85 (s, 3H), 3.99 (d, J = 5.8 Hz, 1H), 4.36 (d, J = 5.9 Hz, 1H), 4.57 (s, 1H), 7.03 – 7.12 (m, 5H), 7.15 (dd, J = 7.6, 1.7 Hz, 2H), 7.28 – 7.34 (m, 5H), 7.37 – 7.41 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 35.5, 52.4, 56.1, 65.7, 67.6, 74.1, 123.2, 125.4, 126.6, 127.1, 127.3, 127.8, 128.0, 128.7, 128.9, 134.4, 135.9, 136.1, 141.3, 151.8, 173.2, 207.9. IR (KBr. cm⁻¹): 3430, 3063, 3032, 3003, 2950, 2840, 1741, 1704, 1609, 1513, 1461, 1440, 1382, 1328, 1285.

(KBr, cm⁻¹): 3430, 3063, 3032, 3003, 2950, 2840, 1741, 1704, 1609, 1513, 1461, 1440, 1382, 1328, 1285, 1252, 1215, 1182, 1121, 1034, 959, 919, 834, 756, 703, 673, 555, 521. **HRMS (ESI-TOF)** calcd for C₂₆ H₂₄ NO₃ ([M+H]⁺): 398.1751, found: 398.1768.

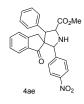
$\label{lem:methyl-2'-(4-fluorophenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate \end{substitute} \begin{substitute} (4ab): \end{substitute}$

MHz, CDCl₃) δ (ppm): 35.6, 52.4, 55.8, 65.6, 67.4, 73.4, 114.8, 115.0, 123.3, 125.5, 127.3, 128.3, 128.4, 128.7, 128.9, 132.2, 134.6, 135.9, 141.1, 151.7, 161.0, 163.5, 173.1, 207.7. IR (KBr, cm⁻¹): 3425, 3066, 3034, 2951, 2924, 2851, 1737, 1704, 1606, 1508, 1461, 1435, 1377, 1329, 1287, 1220, 1153, 1096, 1024, 913, 841, 764, 703, 639, 522. **HRMS (ESI-TOF)** calcd for C₂₆ H₂₃ FNO₃ ([M+H]⁺): 416.1656, found: 416.1653.

Methyl-2'-(4-chlorophenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ac):

CO₂Me NH 4ac Cl

71.6 mg, 83% yield. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 2.77 (d, J = 17.6 Hz, 1H), 2.89 (d, J = 17.6 Hz, 1H), 3.85 (s, 3H), 3.99 (d, J = 6.0 Hz, 1H), 4.36 (d, J = 6.0 Hz, 1H), 4.54 (s, 1H), 7.04 (d, J = 8.5 Hz, 2H), 7.08 – 7.16 (m, 4H), 7.27 – 7.41 (m, 7H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm): 35.6, 52.4, 55.8, 65.6, 67.3, 73.4, 123.4, 125.5, 127.3, 127.4, 128.1,


128.1, 128.7, 128.9, 135.6, 134.7, 135.1, 135.9, 140.9, 151.7, 173.1, 207.5. IR (KBr, cm⁻¹): 3337, 3061, 3033, 2950, 2922, 2849, 1737, 1704, 1603, 1490, 1461, 1439, 1329, 1287, 1215, 1136, 1093, 1041, 1017, 912, 829, 764, 705, 638, 512, 473, 416.

Methyl-2'-(4-bromophenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ad):

82.7 mg, 87% yield. The ratio of **4ad-**A/**4ad-**B/**4ad-**C was 1:0.27:0.15 as determined by 1 H NMR. 1 H NMR (400 MHz, CDCl₃, a mixture of three isomers) δ (ppm): 2.56 (dd, J = 36.0, 18.0 Hz, 2H, isomer B), 2.76 (dd, J = 21.6, 18.0 Hz, 2H, isomer A), 2.88 (d, J = 14.0 Hz, 2H, isomer C), 3.30 (s, 3H, isomer C), 3.42 (s, 3H, isomer B), 3.69 (s, 3H, isomer A), 3.88

(d, J = 7.6 Hz, 1H, isomer C), 4.14 (d, J = 8.4 Hz, 1H, isomer B), 4.32 (d, J = 9.2 Hz, 1H, isomer A), 4.51 (d, J = 9.2 Hz, 1H, isomer A), 4.63 (d, J = 8.4 Hz, 1H, isomer B), 4.67 (s, 1H, isomer B), 4.92 (s, 1H, isomer C), 5.02 (s, 1H, isomer A), 5.33 (d, J = 7.6 Hz, 1H, isomer C), 6.88 (t, J = 1.0 Hz, isomer A), 7.06 - 7.25 (m, 15H, for isomer A and isomer B and isomer C, overlapped), 7.31 (d, J = 7.2 Hz, 1H, isomer B), 7.36 (t, J = 7.2 Hz, 1H, isomer A), 7.62 (d, J = 7.6 Hz, 1H, isomer A), 7.71 (d, J = 7.2 Hz, 1H, isomer B). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 29.6, 33.4, 35.1, 51.5, 51.5, 52.5, 54.7, 56.7, 58.4, 60.6, 63.6, 64.1, 64.7, 65.3, 65.4, 68.7, 68.9, 70.2, 121.1, 121.3, 121.4, 123.3, 123.5, 123.7, 125.4, 125.7, 127.0, 127.1, 127.2, 127.3, 128.0, 128.2, 128.2, 128.4, 128.6, 128.8, 128.8, 128.9, 129.2, 130.8, 130.9, 130.9, 134.8, 134.9, 135.1, 135.7, 135.9, 136.2, 137.0, 137.4, 138.2, 139.2, 151.2, 153.5, 153.7, 172.5, 173.7, 175.2, 207.1, 207.2, 208.9. IR (KBr, cm⁻¹): 3342, 3062, 3032, 2951, 2925, 2851, 1738, 1704, 1605, 1489, 1459, 1436, 1407, 1326, 1285, 1214, 1134, 1073, 1010, 914, 822, 764, 705, 510, 472, 401. **HRMS (ESI-TOF)** calcd for C₂₆ H₂₃ BrNO₃ ([M+H]⁺): 476.0856, found: 476.0850.

75.8 mg, 86% yield. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 2.91 (d, J = 17.8 Hz, 1H), 2.99 (d, J = 17.8 Hz, 1H), 3.32 (s, 3H), 3.89 (d, J = 7.7 Hz, 1H), 5.09 (s, 1H), 5.33 (d, J = 7.6 (d))Hz, 1H), 7.09 - 7.16 (m, 2H), 7.22 (d, J = 6.8 Hz, 2H), 7.30 - 7.39 (m, 5H), 7.47 (d, J =8.7 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 35.5, 51.7, 54.7, 64.8, 65.9, 70.0, 122.9, 123.6, 125.5, 127.6, 127.7, 128.0, 128.7, 128.9, 135.1, 135.7,

139.0, 146.9, 147.3, 150.9, 173.6, 206.4. IR (KBr, cm⁻¹): 3427, 3065, 3031, 2952, 2925, 2853, 1740, 1709, 1607, 1562, 1467, 1438, 1406, 1363, 1325, 1210, 1128, 1068, 1030, 883, 826, 748, 703, 674, 514, 448. **HRMS (ESI-TOF)** calcd for $C_{26}H_{23}N_2O_5$ ([M+H]+): 443.1601, found: 443.1593.

Methyl-1-oxo-4'-phenyl-2'-(4-(trifluoromethyl)phenyl)-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'carboxylate (4af):

79.4 mg, 85% yield. The ratio of 4af-A/4af-B/4af-C was 1:0.31:0.24 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of three isomers) δ (ppm): 2.49 (d, J = 17.6Hz, 1H, isomer C), 2.60 (d, J = 17.6 Hz, 1H, isomer C), 2.71 (d, J = 17.2 Hz, 1H, isomer B), 2.80 (d, J = 17.2 Hz, 1H, isomer B), 2.84 (d, J = 17.6 Hz, 1H, isomer A), 2.93 (d, J =17.6 Hz, 1H, isomer A), 3.30 (s, 3H, isomer A), 3.43 (s, 3H, isomer C), 3.70 (s, 3H, isomer B), 3.87 (d, J =8.0 Hz, 1H, isomer A), 4.12 (d, J = 8.4 Hz, 1H, isomer C), 4.31 (d, J = 9.6 Hz, 1H, isomer B), 4.51 (d, 9.6 Hz, 1H, isomer B), 4.63 (d, J = 8.4 Hz, 1H, isomer C), 4.65 (s, 1H, isomer C), 4.92 (s, 1H, isomer A), 5.00 (s, 1H, isomer B), 5.30 (d, J = 8.0 Hz, 1H, isomer A), 6.90 – 6.96 (m, 1H, isomer A), 7.09 – 7.22 (m, 10H, for isomer A and isomer B and isomer C, overlapped), 7.29 – 7.43 (m, 8H, for isomer A and isomer B and isomer C, overlapped), 7.48 (d, J = 1.6 Hz, 1H, isomer B), 7.64 (d, J = 7.6 Hz, 1H, isomer B), 7.75 (d, J= 7.6 Hz, 1H, isomer C). 13 C NMR (100 MHz, CDCl₃) δ (ppm): 29.7, 33.5, 35.3, 51.6, 51.7, 52.3, 54.4, 56.6, 60.6, 63.6, 64.1, 64.6, 65.3, 65.6, 68.1, 68.3, 68.6, 123.4, 123.6, 123.9, 125.5, 125.8, 126.2, 126.4, 126.6, 127.2, 127.2, 127.3, 127.4, 127.5, 128.1, 128.3, 128.7, 128.7, 128.9, 129.1, 129.2, 129.7, 129.7, 129.8, 131.1, 127.2,131.3, 131.4, 131.9, 132.0, 134.9, 135.1, 135.3, 136.0, 137.0, 138.2, 138.9, 139.0, 139.1, 151.0, 153.4, 153.5, 172.3, 173.7, 175.1, 206.6, 206.9. IR (KBr, cm⁻¹): 3372, 3065, 3033, 2953, 2926, 2854, 1741, 1705, 1611, 1497, 1462, 1437, 1327, 1276, 1212, 1167, 1124, 1069, 1019, 981, 925, 839, 756, 704, 676, 607, 551, 472, 411. **HRMS (ESI-TOF)** calcd for $C_{27}H_{23}F_3NO_3$ ([M+H]⁺): 466.1625, found: 466.1631.

Methyl-1-oxo-4'-phenyl-2'-(p-tolyl)-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ag):

76.6 mg, 93% yield. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 2.14 (s, 3H), 2.83 (q, J = 17.6Hz, 2H), 3.85 (s, 3H), 3.97 (d, J = 5.9 Hz, 1H), 4.37 (d, J = 5.9 Hz, 1H), 4.54 (s, 1H), 6.86(d, J = 7.5 Hz, 2H), 7.04 (d, J = 7.7 Hz, 2H), 7.10 (d, J = 7.6 Hz, 2H), 7.29 - 7.33 (m, 5H),7.36 – 7.42 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 20.9, 35.5, 52.4, 56.2, 65.6, 67.5, 73.9, 123.3, 125.5, 126.6, 127.1, 127.2, 128.7, 128.8, 128.8, 133.0, 134.4, 136.1,

137.4, 141.2, 151.9, 173.2, 208.0. IR (KBr, cm⁻¹): 3340, 3062, 3030, 2950, 2923, 2855, 1738, 1704, 1606, 1509, 1459, 1435, 1377, 1328, 1284, 1214, 1139, 1029, 913, 871, 820, 762, 704, 674, 515, 470. **HRMS** (ESI-TOF) calcd for $C_{27}H_{26}NO_3$ ([M+H]⁺): 412.1907, found: 412.1909.

Methyl-2'-(4-methoxyphenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ah):

CO₂Me

83.6 mg, 98% yield. The ratio of **4ah**-A/**4ah**-B was 1:0.87 as determined by ¹H NMR. **1H** NMR (400MHz, CDCl₃, a mixture of two isomers) δ (ppm): 2.74 (d, J = 17.2 Hz, 1H, isomer A), 2.81 (d, J = 11.2 Hz, 1H, isomer B), 2.85 (d, J = 11.2 Hz, 1H, isomer B), 2.99

 O_{CH_3} (d, J = 17.2 Hz, 1H, isomer A), 3.30 (s, 3H, isomer B), 3.64 (s, 3H, isomer B), 3.67 (s, 3H, isomer A), 3.70 (s, 3H, isomer A), 3.89 (d, J = 7.9 Hz, 1H, isomer B), 4.34 (d, J = 9.1 Hz, 1H, isomer A), 4.50 (d, J = 9.1 Hz, 1H, isomer A), 4.89 (s, 1H, isomer B), 5.01 (s, 1H, isomer A), 5.35 (d, J = 7.9 Hz, 1H, isomer B), 6.60 (dd, J = 14.1, 8.7 Hz, 1H, for isomer A and isomer B, overlapped), 7.10 (d, J = 7.2 Hz, 3H, for isomer A and isomer B, overlapped), 7.15 (m, 5H, for isomer A and isomer B, overlapped), 7.16 – 7.24 (m, 7H, for isomer A and isomer B, overlapped), 7.29 – 7.39 (m, 6H, for isomer A and isomer B, overlapped), 7.61 (d, J = 7.6 Hz, 1H, isomer A). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 29.7, 35.0, 51.5, 52.4, 54.8, 55.1, 55.1, 56.6, 60.7, 64.8, 65.3, 65.6, 69.1, 70.7, 113.1, 113.3, 113.8, 113.9, 123.2, 123.4, 125.4, 125.7, 126.8, 127.1, 127.1, 127.2, 127.8, 128.1, 128.2, 128.5, 129.1, 130.2, 134.5, 134.6, 136.2, 136.7, 137.2, 139.5, 151.5, 153.8, 158.7, 159.0, 173.9, 175.4, 207.6, 207.7. IR (KBr, cm⁻¹): 3429, 3063, 3032, 3002, 2928, 2844, 1736, 1704, 1608, 1512, 1461, 1439, 1379, 1290, 1250, 1214, 1178, 1144, 1033, 958, 914, 836, 762, 704, 622, 535, 472. HRMS (ESI-TOF) calcd for C₂₇H₂₆ NO₄ ([M+H]⁺): 428.1856, found: 428.1860.

Methyl-2'-(2-chlorophenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4aj):

CO₂Me

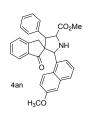
56.2 mg, 65% yield. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 2.89 (d, J = 17.3 Hz, 1H), 3.23 (d, J = 17.3 Hz, 1H), 3.82 (s, 3H), 4.09 (d, J = 7.4 Hz, 1H), 4.44 (d, J = 7.4 Hz, 1H), 5.25 (s, 1H), 7.00 – 7.12 (m, 3H), 7.18 (dd, J = 13.2, 7.2 Hz, 2H), 7.28 – 7.36 (m, 7H), 7.64 (d, J = 7.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm): 35.9, 52.4, 55.2, 66.1, 66.5, 68.2, 123.2,

125.6, 126.8, 127.1, 127.3, 128.6, 128.6, 128.7, 128.7, 129.1, 133.4, 134.4, 135.5, 136.1, 139.4, 151.9, 173.3, 206.9. IR (KBr, cm⁻¹): 3363, 3062, 3030, 2949, 2923, 2850, 1740, 1702, 1606, 1496, 1462, 1440, 1382, 1331, 1244, 1207, 1179, 1094, 1040, 961, 920, 870, 760, 700, 670, 575, 466. **HRMS (ESI-TOF)** calcd for $C_{26}H_{23}CINO_3$ ([M+H]⁺): 432.1361, found: 432.1358.

Methyl-2'-(2-bromophenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ak)

81.1 mg, 85% yield. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 2.91 (d, J = 17.2 Hz, 1H), 3.29 (d, J = 17.2 Hz, 1H), 3.80 (s, 3H), 4.10 (d, J = 7.5 Hz, 1H), 4.45 (d, J = 7.5 Hz, 1H), 5.22 (s, 1H), 6.95 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.5 Hz, 1H), 7.22 – 7.39 (m, 9H), 7.67 (d, J = 7.7 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm): 35.9, 52.3, 55.0, 123.2, 124.2, 125.6, 127.1, 127.2, 127.3, 128.6, 128.7, 128.9, 129.0, 132.4, 134.4, 136.3

65.8, 66.4, 70.6, 123.2, 124.2, 125.6, 127.1, 127.2, 127.3, 128.6, 128.7, 128.9, 129.0, 132.4, 134.4, 136.3, 137.4, 139.1, 151.9, 173.3, 206.8. IR (KBr, cm⁻¹): 3380, 3062, 3032, 2951, 2924, 2852, 1739, 1707, 1606,


1496, 1464, 1436, 1379, 1328, 1272, 1211, 1105, 1075, 1023, 920, 868, 758, 703, 660, 523, 459. **HRMS** (**ESI-TOF**) calcd for $C_{26}H_{23}BrNO_3$ ([M+H]+): 476.0856, found: 476.0852.

Methyl-2'-(2-methoxyphenyl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'carboxylate (4al):

CO₂Me

57.6 mg, 67% yield. The ratio of 4al-A/4al-B/4al-C was 1:0.7:0.52 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃ a mixture of three isomers) δ (ppm): 2.38 (d, J = 17.6Hz, 1H, isomer A), 2.46 (d, J = 17.6 Hz, 1H, isomer A), 2.56 (d, J = 17.2 Hz, 1H, isomer B), 2.75 (d, J = 17.2 Hz, 1H, isomer B), 2.82 (d, J = 15.6 Hz, 1H, isomer C), 2.90 (d, J =15.6 Hz, 1H, isomer C), 3.04 (s, 3H, isomer A), 3.27 (s, 3H, isomer C), 3.33 (s, 3H, isomer B), 3.37 (s, 3H, isomer A), 3.45 (s, 3H, isomer C), 3.72 (s, 3H, isomer B), 3.79 (d, J = 7.6 Hz, 1H, isomer C), 3.92 (d, J = 1.6Hz, 1H, isomer B), 3.94 (d, J = 1.6 Hz, 1H, isomer B), 4.45 (d, J = 8.0 Hz, 1H, isomer A), 4.74 (d, J = 8.0 Hz, 1H, isomer A), 4.96 (s, 1H, isomer A), 5.12 (s, 1H, isomer B), 5.28 (d, *J* = 7.6 Hz, 1H, isomer C), 5.54 (s, 1H, isomer C), 6.33 (d, J = 7.9 Hz, 1H, isomer C), 6.38 (d, J = 7.9 Hz, 1H, isomer C), 6.52 (d, J = 7.9 Hz, 1H, isomer A), 6.78 - 6.83 (m, 1H, for isomer A and isomer B and isomer C, overlapped), 6.88 - 6.96 (m, 2H, for isomer A and isomer B and isomer C, overlapped), 7.00 – 7.08 (m, 3H, for isomer A and isomer B and isomer C, overlapped), 7.13 – 7.23 (m, 10H, for isomer A and isomer B and isomer C, overlapped), 7.25 -7.30 (m, 4H, for isomer A and isomer B and isomer C, overlapped), 7.33 - 7.37 (m, 3H, for isomer A and isomer B and isomer C, overlapped), 7.50 (dd, J = 7.7, 1.5 Hz, 1H, isomer B), 7.62 (d, J = 7.3 Hz, 1H, isomer B), 7.78 (t, J = 6.2 Hz, 2H, for isomer A and isomer B), 7.91 (d, J = 7.5 Hz, 1H, isomer A). ¹³C NMR (100 MHz, CDCl₃)δ(ppm): 31.0, 34.6, 36.5, 51.3, 51.4, 52.4, 53.6, 54.6, 55.3, 55.4, 56.1, 58.4, 61.9, $62.8,\ 63.5,\ 64.0,\ 64.3,\ 64.3,\ 65.0,\ 65.3,\ 65.9,\ 108.6,\ 109.1,\ 119.7,\ 120.2,\ 120.3,\ 122.8,\ 123.1,\ 123.5,\ 125.1,$ 125.4, 125.5, 126.3, 126.7, 126.8, 126.9, 126.9, 127.1, 127.3, 127.4, 127.4, 127.7, 127.8, 127.9, 127.9, 128.0, 128.2, 128.2, 128.4, 128.5, 128.7, 128.7, 129.2, 129.7, 133.9, 134.0, 134.2, 135.5, 136.0, 136.9, 137.9, 139.3, 139.5, 152.2, 152.6, 153.6, 156.4, 156.5, 156.5, 172.1, 173.6, 175.2, 206.4, 208.0, 209.7. IR (KBr, cm⁻¹): 3424, 3065, 3033, 3003, 2950, 2842, 1740, 1708, 1604, 1492, 1462, 1438, 1328, 1280, 1244, 1207, 1177, 1104, 1028, 913, 869, 756, 703, 665, 575, 471. **HRMS (ESI-TOF)** calcd for $C_{27}H_{26}NO_4$ ([M+H]⁺):

Methyl-2'-(6-methoxynaphthalen-1-yl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'carboxylate (4am):

428.1856, found: 428.1853.

85.5 mg, 90% yield. The ratio of **4am-**A/**4am-**B was 1:0.32 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of two isomers) δ (ppm): 2.79 (d, J = 17.9 Hz, 1H, isomer B), 2.88 (d, J = 17.9Hz, 1H, isomer B), 2.91 (d, J = 18.2 Hz, 1H, isomer A), 2.96 3H, isomer A), 3.84 (s, 3H, isomer B), 3.93 (d, J = 7.8 Hz, 1H, isomer A), 4.39 (d, J =

9.2 Hz, 1H, isomer B), 4.57 (d, J = 9.2 Hz, 1H, isomer B), 5.07 (s, 1H, isomer A), 5.22 (s, 1H, isomer B), 5.42 (d, J = 7.8 Hz, 1H, isomer A), 6.76 (d, J = 7.6 Hz, 1H, isomer B), 6.93 – 7.04 (m, 3H, for isomer A and isomer B, overlapped), 7.07 - 7.15 (m, 3H, for isomer A and isomer B, overlapped), 7.28 - 7.43 (m, 10H, for isomer A and isomer B, overlapped), 7.56 (d, J = 8.8 Hz, 1H, isomer A), 7.62 - 7.64 (m, 2H, for isomer A and isomer B, overlapped), 7.81 (s, 1H, isomer B). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 30.5, 35.1, 51.5, 52.5, 54.9, 55.1, 57.1, 58.4, 60.8, 64.8, 65.5, 65.5, 69.3, 71.1, 105.3, 105.4, 118.5, 118.6, 123.2, 123.4, 125.3, 125.4, 125.6, 125.6, 125.7, 126.2, 126.2, 126.4, 126.8, 127.1, 127.1, 127.3, 128.1, 128.2, 128.3, 128.4, 128.6, 128.8, 129.1, 129.3, 129.4, 130.9, 133.0, 133.8, 134.0, 134.5, 134.7, 136.0, 136.4, 137.1, 139.5, 151.4, 157.4, 173.9, 207.6. IR (KBr, cm⁻¹): 3432, 3060, 3031, 3002, 2949, 2845, 1740, 1705, 1632, 1607, 1487, 1461, 1437, 1386, 1327, 1267, 1214, 1175, 1120, 1032, 955, 906, 855, 811, 763, 705, 672, 564, 476. HRMS (ESITOF) calcd for $C_{31}H_{28}NO_4$ ([M+H]+): 478.2013, found: 478.2025.

Methyl-2'-(furan-2-yl)-1-oxo-4'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4an):

CO₂Me

46.3 mg, 61% yield. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 2.72 (d, J = 17.7 Hz, 1H), 2.78 (d, J = 17.7 Hz, 1H), 3.43 (s, 3H), 4.08 (d, J = 8.6 Hz, 1H), 4.61 (d, J = 8.6 Hz, 1H), 4.72 (s, 1H), 6.20 (s, 2H), 7.07 (d, J = 7.6 Hz, 1H), 7.16 – 7.25 (m, 6H), 7.29 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.71 (d, J = 7.4 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm):

33.4, 51.6, 55.8, 64.1, 64.5, 64.9, 108.0, 110.0, 124.0, 125.7, 127.2, 127.3, 128.2, 129.5, 134.9, 135.3, 137.4, 142.0, 152.1, 153.6, 172.4, 208.2. IR (KBr, cm⁻¹): 3344, 3062, 3031, 2949, 2924, 2852, 1960, 1895, 1817, 1740, 1704, 1606, 1494, 1458, 1435, 1371, 1326, 1291, 1212, 1150, 1114, 1075, 1036, 928, 869, 843, 759, 703, 665, 581, 544, 469. **HRMS (ESI-TOF)** calcd for C₂₄H₂₂NO₄ ([M+H]⁺): 388.1543, found: 388.1536.

Methyl-4'-(4-fluorophenyl)-1-oxo-2'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ba):

66.2 mg, 80% yield. The ratio of **4ba**-A/**4ba**-B/**4ba**-C was 1:0.24:0.23 as determined by 1 H NMR. 1 H NMR (400 MHz, CDCl₃, a mixture of three isomers) δ (ppm): 2.68 (d, J = 11.6 Hz, 2H, isomer C), 2.73 (d, J = 10.8 Hz, 1H, isomer A), 2.79 (d, J = 21.2 Hz, 1H, isomer A), 2.87 (s, 2H, isomer B), 3.35 (s, 3H, isomer C), 3.67 (s, 3H, isomer B), 3.70 (s,

3H, isomer A), 3.74 (d, J = 10.2 Hz, 1H, isomer C), 3.91 (d, J = 7.8 Hz, 1H, isomer B), 4.32 (d, J = 9.3 Hz, 1H, isomer A), 4.46 (d, J = 9.3 Hz, 1H, isomer A), 4.75 (s, 1H, isomer C), 4.83 (d, J = 10.2 Hz, 1H, isomer C), 4.90 (s, 1H, isomer B), 5.06 (s, 1H, isomer A), 5.37 (d, J = 7.8 Hz, 1H, isomer B), 6.76 – 6.88 (m, 3H, for isomer A, isomer B and isomer C, overlapped), 7.00 – 7.26 (m, 13H, for isomer A, isomer B and isomer C, overlapped), 7.32 – 7.40 (m, 2H, for isomer A, isomer B and isomer C, overlapped), 7.51 (d, J = 7.8 Hz, 1H, isomer B), 7.62 (d, J = 7.6 Hz, 1H, isomer A). ¹³C **NMR** (100 MHz, CDCl₃) δ (ppm): 29.6, 35.2, 35.9, 51.5, 52.1, 52.4, 54.0, 56.0, 57.3, 61.0, 62.6, 64.8, 65.0, 65.4, 65.4, 66.8, 69.3, 71.2, 115.0, 115.2, 115.3, 115.5, 123.3, 123.4, 123.6, 125.4, 125.7, 126.7, 126.9, 127.2, 127.4, 127.5, 127.6, 127.7, 127.9, 128.5, 129.6, 129.6, 130.3, 130.4, 130.6, 130.7, 132.2, 132.3, 134.5, 134.8, 134.8, 135.2, 136.0, 137.1, 138.1, 151.1, 152.1, 153.6, 160.5, 163.0, 173.6, 173.9, 175.0, 207.3. IR (KBr, cm⁻¹): 3428, 3064, 3033, 2950, 2854, 1737, 1704, 1608, 1493, 1460, 1434, 1328, 1286, 1227, 1104, 1096, 1013, 910, 872, 841, 759, 701, 649, 586, 471. **HRMS (ESI-TOF)** calcd for $C_{26}H_{23}FNO_3$ ([M+H]⁺): 416.1656, found: 416.1653.

Methyl-4'-(4-chlorophenyl)-1-oxo-2'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4ca):

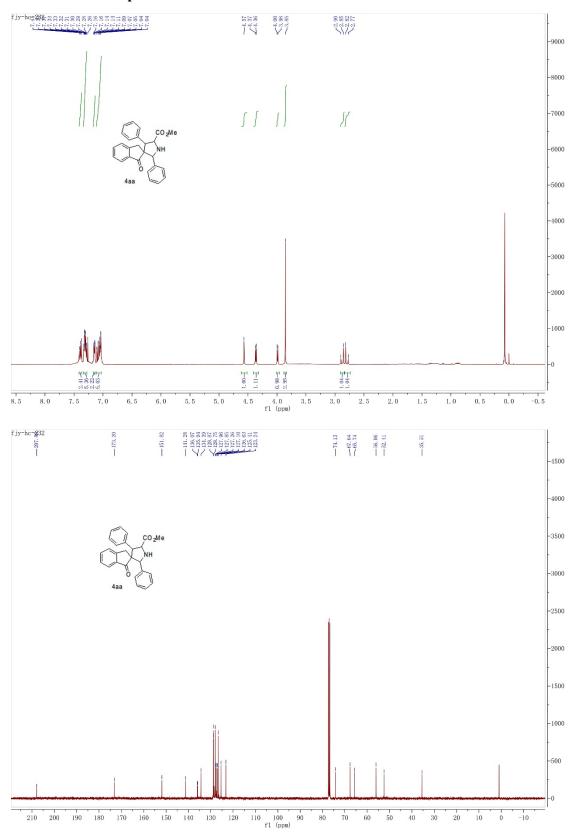
CO₂Me

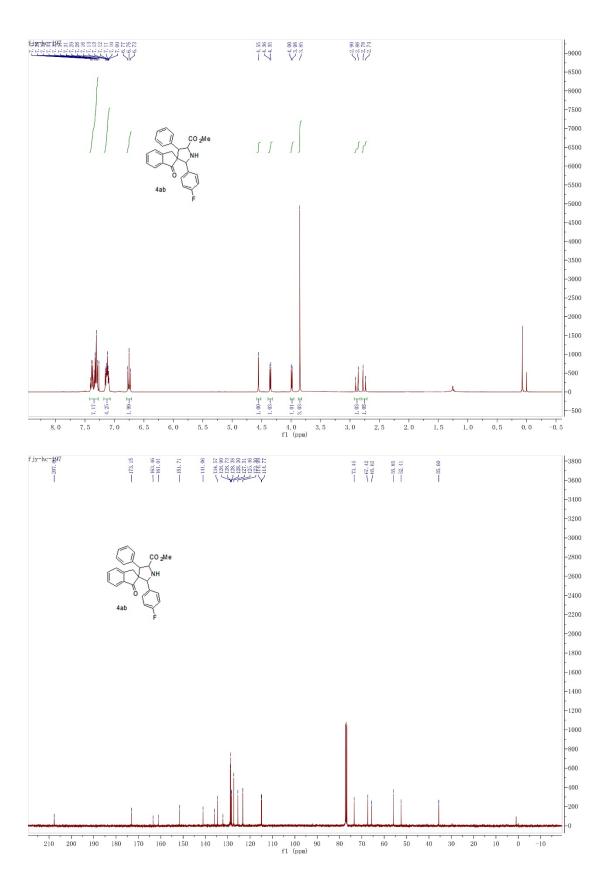
65.6mg, 76% yield. The ratio of **4ca**-A/**4ca**-B/**4ca**-C was 1:0.29:0.16 as determined by 1 H NMR. 1 H NMR (400 MHz, CDCl₃, a mixture of three isomers) δ (ppm): 2.69 (d, J = 17.6 Hz, 1H, isomer A), 2.79 (d, J = 17.6 Hz, 2H, isomer C), 2.85 (d, J = 17.6 Hz, 1H, isomer A), 2.86 (s, 2H, isomer B), 3.37 (s, 3H, isomer C), 3.68 (s, 3H, isomer B), 3.71 (s, 3H,

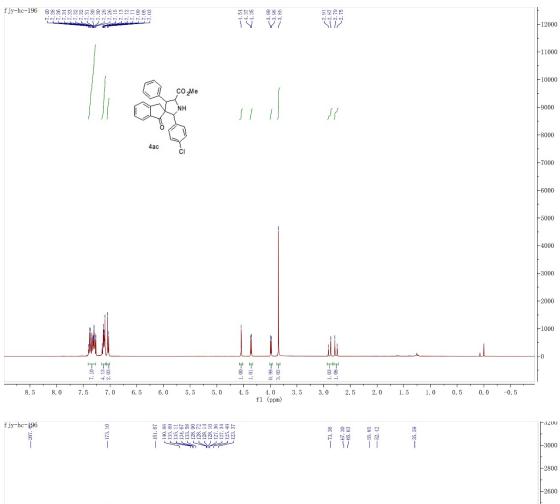
isomer A), 3.82 (d, J = 10.2 Hz, 1H, isomer B), 3.89 (d, J = 7.7 Hz, 1H, isomer C), 4.32 (d, J = 9.2 Hz, 1H, isomer A), 4.46 (d, J = 9.2 Hz, 1H, isomer A), 4.74 (s, 1H, isomer B), 4.83 (d, J = 10.2 Hz, 1H, isomer B), 4.88 (s, 1H, isomer C), 5.04 (s, 1H, isomer A), 5.39 (d, J = 7.7 Hz, 1H, isomer C), 6.87 (d, J = 7.7 Hz, 1H, isomer A), 7.06 – 7.17 (m, 10H, for isomer A and isomer B and isomer C, overlapped), 7.21 – 7.25 (m, 4H, for isomer A and isomer B and isomer C, overlapped), 7.53 (d, J = 7.6 Hz, 1H, isomer B), 7.62 (d, J = 7.6 Hz, 1H, isomer A). ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 29.6, 35.2, 35.8, 51.6, 52.2, 52.5, 54.1, 55.9, 57.3, 60.9, 62.6, 64.7, 65.0, 65.3, 65.4, 67.0, 69.5, 71.2, 123.3, 123.4, 123.7, 125.4, 125.7, 125.7, 126.7, 126.9, 127.0, 127.2, 127.4, 127.6, 127.6, 127.7, 127.9, 128.3, 128.4, 128.6, 128.7, 129.5, 130.2, 130.4, 132.9, 133.3, 133.7, 134.6, 134.8, 134.9, 135.2, 136.0, 137.0, 138.0, 142.5, 151.1, 152.1, 153.3, 160.8, 173.6, 175.0, 207.2. IR (KBr, cm⁻¹): 3388, 3070, 3033, 2952, 2926, 2853, 1738, 1707, 1631, 1602, 1521, 1439, 1346, 1275, 1212, 1109, 1015, 921, 854, 800, 757, 701, 632, 510, 472. **HRMS (ESI-TOF)** calcd for C₂₆ H₂₃ CINO₃ ([M+H]⁺): 432.1361, found: 432.1359.

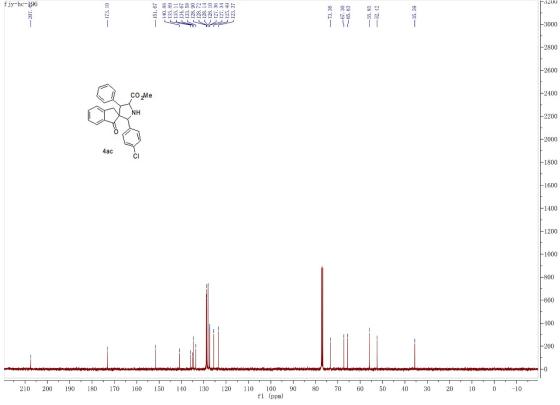
72.7 mg, 78% yield. The ratio of **4ea**-A/4**ea**-B was 1:0.31 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of two isomers) δ (ppm): 2.65 (d, J = 17.2 Hz, 1H, isomer A), 2.72 (d, J = 18.0 Hz, 1H, isomer B), 2.82 (d, J = 18.0 Hz, 1H, isomer B), 2.87 (d, J = 17.2 Hz, 1H, isomer A), 3.69 (s, 3H, isomer B), 3.72 (s, 3H, isomer A),

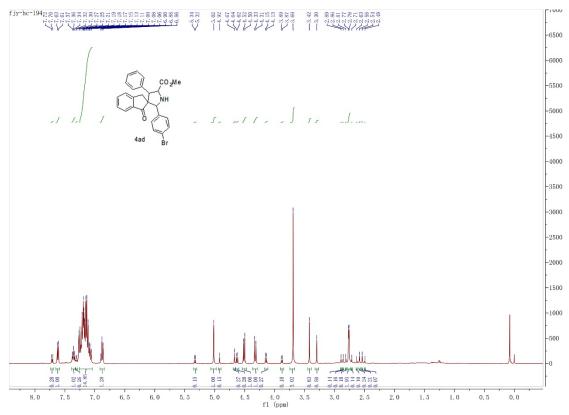
3.82 (d, J = 10.0 Hz, 1H, isomer B), 4.41 (d, J = 8.8 Hz, 1H, isomer A), 4.53 (d, J = 8.8 Hz, 1H, isomer A), 4.78 (s, 1H, isomer B), 4.89 (d, J = 10.0 Hz, 1H, isomer B), 5.04 (s, 1H, isomer A), 6.85 (d, J = 7.6 Hz, 1H, isomer A), 7.04 – 7.18 (m, 5H, for isomer A and isomer B, overlapped), 7.18 – 7.24 (m, 4H, for isomer A and isomer B, overlapped), 7.27 – 7.39 (m, 6H, for isomer A and isomer B, overlapped), 7.43 (d, J = 8.2 Hz, 2H, isomer A), 7.51 (d, J = 7.8 Hz, 1H, isomer B), 7.63 (d, J = 7.6 Hz, 1H, isomer A). ¹³C **NMR** (100 MHz, CDCl₃) δ (ppm): 29.7, 35.9, 52.2, 52.5, 56.0, 57.6, 60.8, 62.6, 65.2, 65.4, 67.0, 69.6, 122.5, 123.4, 123.7, 125.2, 125.2, 125.7, 126.7, 126.9, 127.1, 127.5, 127.5, 127.6, 127.6, 127.8, 128.5, 128.6, 129.2, 134.9, 135.0, 135.9, 137.0, 137.8, 139.6, 141.0, 142.3, 152.0, 153.4, 173.6, 174.9, 206.9, 207.6. IR (KBr, cm⁻¹): 3431, 3062, 3032, 2949, 2925, 2852, 1740, 1705, 1606, 1488, 1460, 1436, 1379, 1327, 1279, 1214, 1123, 1074, 1012, 922, 828, 799, 757, 703, 671, 513, 471. **HRMS** (ESI-TOF) calcd for $C_{27}H_{23}$ F₃NO₃ ([M+H]⁺): 466.1625, found: 466.1627.

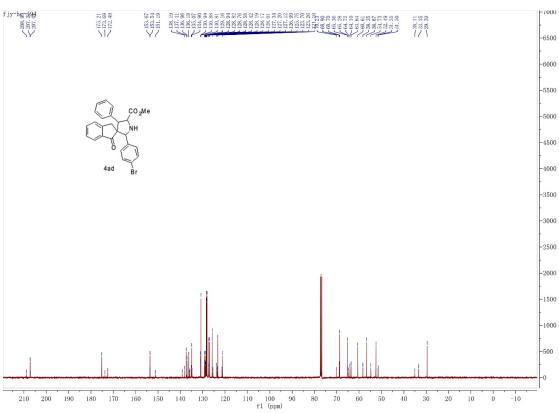

Methyl-4'-(4-methoxyphenyl)-1-oxo-2'-phenyl-1,3-dihydrospiro[indene-2,3'-pyrrolidine]-5'-carboxylate (4fa):

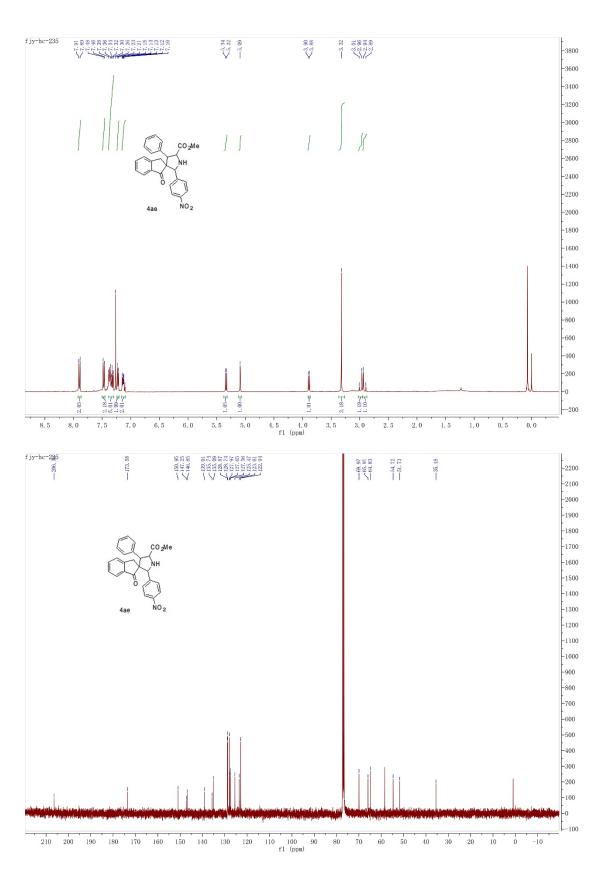

H₃CO CO₂Me

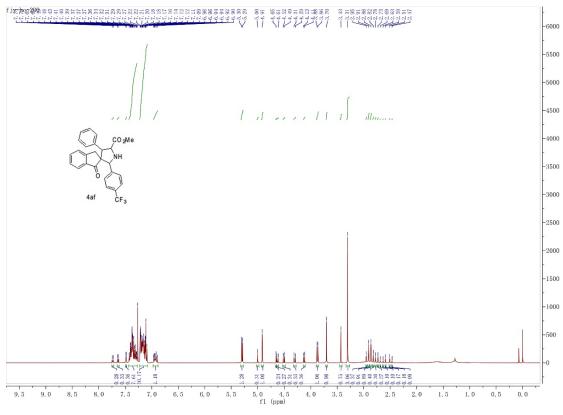

54.5 mg, 64% yield. The ratio of **4fa-**A/**4fa-**B/**4fa-**C was 1:0.43:0.17 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of three isomers) δ (ppm): 2.74 (d, J = 8.4 Hz, 2H, isomer A), 2.80 (d, J = 8.0 Hz, 2H, isomer C), 2.83 (d, J = 8.0 Hz, 2H, isomer B), 3.35 (s, 3H, isomer B), 3.66 (s, 3H, isomer C), 3.67 (s, 3H, isomer C), 3.69 (s,

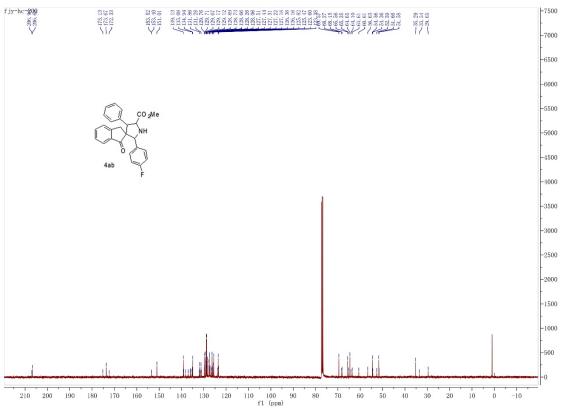

3H, isomer A), 3.70 (s, 3H, isomer A), 3.82 (s, 3H, isomer B), 3.87 (d, J = 7.9 Hz, 1H, isomer B), 4.31 (d, J = 9.3 Hz, 1H, isomer A), 4.46 (d, J = 9.3 Hz, 1H, isomer A), 4.72 (s, 1H, isomer C), 4.84 (d, J = 10.2 Hz, 1H, isomer C), 4.92 (s, 1H, isomer B), 5.05 (s, 1H, isomer A), 5.34 (d, J = 7.9 Hz, 1H, isomer B), 6.63 (d, J = 8.7 Hz, 1H, isomer B), 6.69 (d, J = 8.7 Hz, 2H, isomer A), 6.87 (t, J = 7.5 Hz, 2H, isomer A), 7.00 – 7.10 (m, 5H, for isomer A and isomer B and isomer C, overlapped), 7.12 – 7.15 (m, 3H, for isomer A and isomer B and isomer C, overlapped), 7.32 – 7.40 (m, 2H, for isomer A and isomer B and isomer C, overlapped), 7.53 (d, J = 7.7 Hz, 1H, isomer C), 7.61 (d, J = 7.6 Hz, 1H, isomer A). ¹³C **NMR** (100 MHz, CDCl₃) δ (ppm): 29.3, 35.0, 35.6, 45.7, 51.2, 52.1, 54.0, 54.8, 54.8, 55.0, 56.1, 60.8, 61.2, 62.6, 64.7, 64.8, 65.3, 65.4, 66.7, 69.2, 70.8, 113.3, 113.3, 113.6, 122.9, 123.0, 123.2, 125.3, 125.5, 126.6, 126.9, 127.0, 127.1, 127.2, 127.3, 127.5, 127.6, 128.3, 128.3, 129.0, 129.7, 130.0, 130.2, 131.2, 134.2, 134.4, 136.0, 136.0, 137.0, 138.1, 138.2, 151.3, 152.1, 153.6, 158.3, 158.5, 173.6, 175.1, 207.2. IR (KBr, cm⁻¹): 3425, 3330, 3063, 3033, 2926, 2854, 1741, 1706, 1607, 1498, 1462, 1437, 1377, 1326, 1281, 1219, 1152, 1122, 1069, 1015, 957, 887, 813, 759, 706, 677, 602, 557. **HRMS** (**ESI-TOF**) calcd for C₂₇ H₂₆ NO₃ ([M+H]⁺): 428.1856, found: 428.1854.

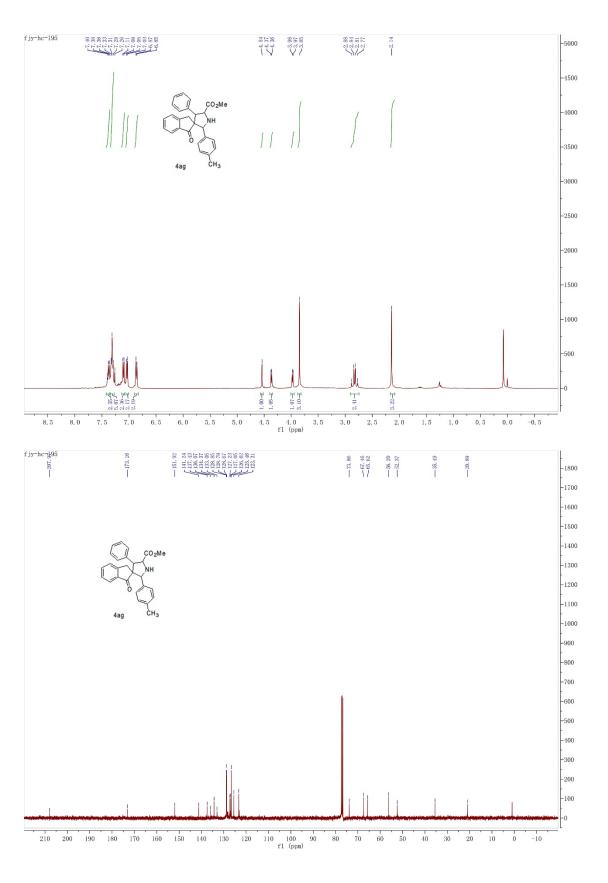

Selected NMR spectra

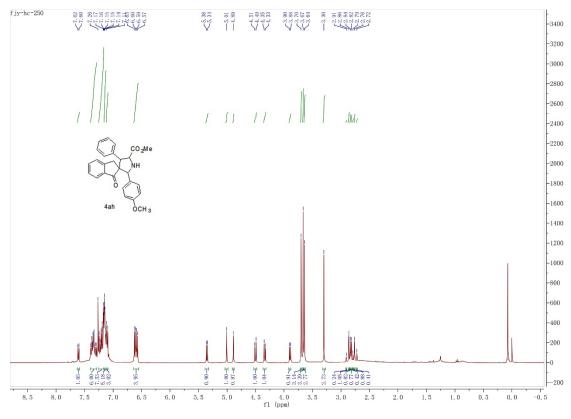


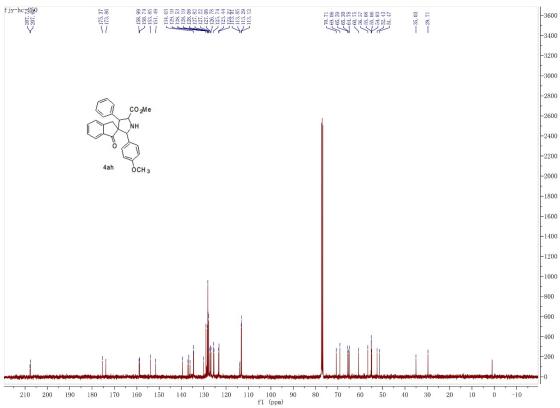


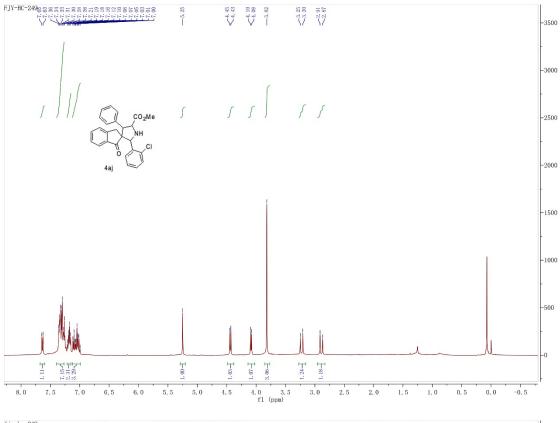


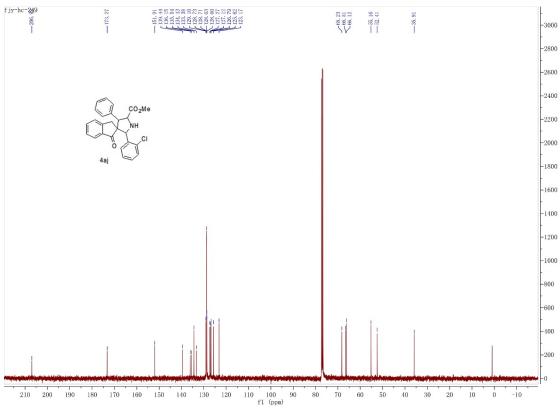


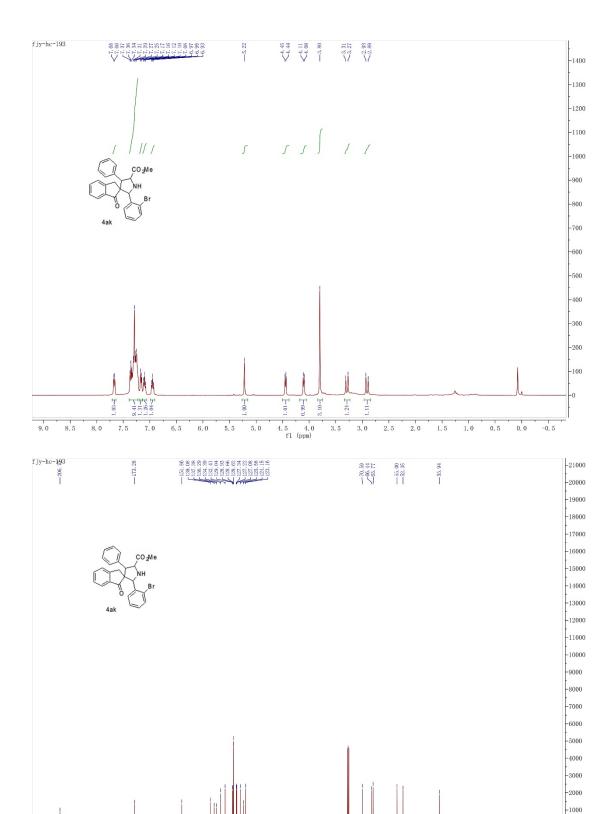










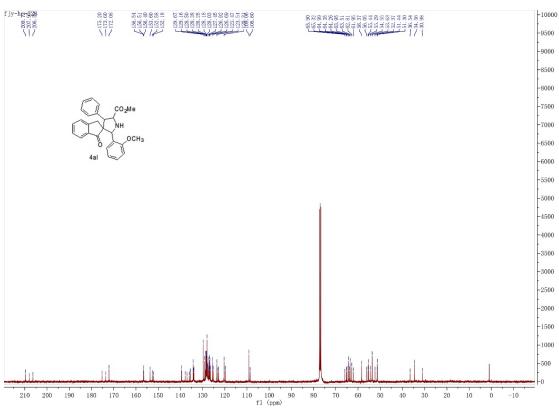


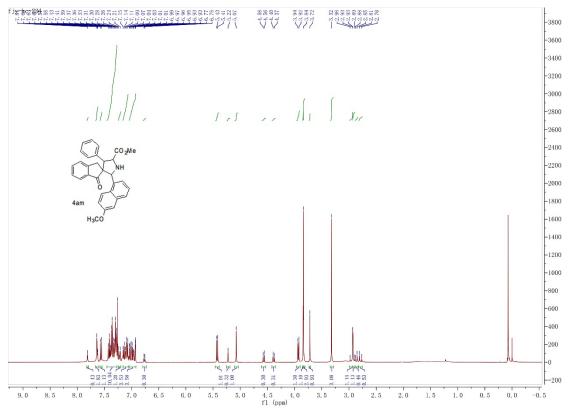
140 130 120 110 100 90 f1 (ppm)

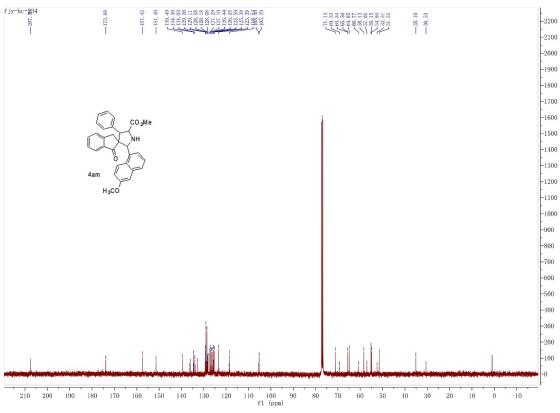
180

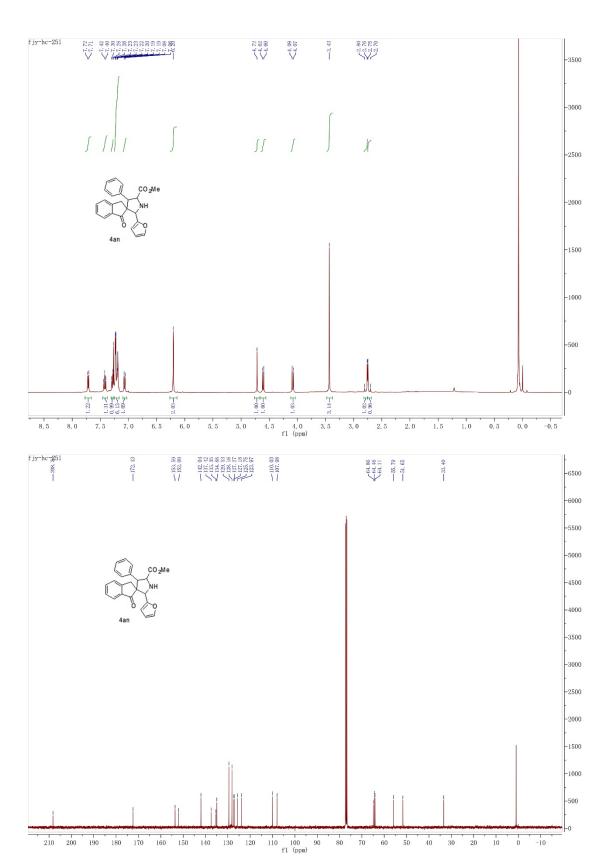
170


160 150


200


80


70 60


30 20

