Electronic Supplementary Information (ESI†)

Roles of solvent, annealing and Bi³⁺ co-doping on crystal structure and luminescence properties of YPO₄: Eu³⁺ Nanoparticles

R. S. Ningthoujam,* Anusha Sharma, K. S. Sharma, K. C. Barick, P. A. Hassan, R. K. Vatsa* *Chemistry Division, Bhabha Atomic Research Centre, Mumbai – 400085, India*

Corresponding authors: Phone: + 91 22 25592321, Fax: + 91 22 25505151, E-mail: rsn@barc.gov.in (RSN), rkvatsa@barc.gov.in (RKV)

Materials

All reagents used were of analytical grade (AR) grade. The starting materials for Y^{3+} , PO_4^{3-} , Eu^{3+} , Bi^{3+} are yttrium oxide (Y_2O_3 , 99.99%, Sigma Aldrich), ammonium dihydrogen phosphate ($NH_4H_2PO_4$, 99.999%, Sigma Aldrich) and europium nitrate hexahydrate ($Eu(NO_3)_3.6H_2O$, 99.9%, Sigma Aldrich), bismuth nitrate pentahydrate ($Bi(NO_3)_3.5H_2O$, 99.99%, Sigma Aldrich), respectively. Concentrated nitric acid (HNO₃), ethylene glycol (EG), polyethylene glycol (PEG-6000), polyethylene glycol diacid (PEG-Diacid-600) were used without further purification. Milli Q water was used in the experiment.

Fig. S1. XRD patterns of YPO₄: Eu co-doped with different concentrations of Bi³⁺ (0, 10 and 20 at. %) samples prepared in PEG-diacid medium.

Fig. S2. XRD patterns of YPO₄:Eu co-doped with different concentrations of Bi³⁺ (0, 10 and 20 at. %) prepared in water medium.

Fig. S3. FTIR spectra of YPO₄: Eu co-doped with different concentrations of Bi^{3+} samples prepared in PEG-diacid: (a) as-prepared (0 at.% Bi) and 900 °C heated samples (0 at.% Bi^{3+} (b) and 10 at.% Bi^{3+} (c)).

Fig. S5. TEM images of 900 °C heated samples of YPO₄:Euprepared in PEG-diacid: (a) 0 at.% Bi and (c) 10 at.% Bi and their corresponding SAED patterns (b) and (d).

Fig. S6. Excitation spectra (monitoring emission wavelength at 612 nm) of Bi^{3+} (0, 10 and 20 at.%) co-doped YPO₄:Eu prepared in different solvents (a) PEG, (b) PEG-diacid and (c) water.

Fig. S7. Emission spectra of Bi^{3+} co-doped YPO4:Eu prepared in PEG-diacid solvent after excitation at (a) 260 and (b) 395 nm.

Fig. S8. Emission spectra of Bi^{3+} co-doped YPO4:Eu prepared in water after excitation at (a) 260 and (b) 395 nm.

Note: There are a typical emission peak of Eu³⁺ at ~592 nm corresponding to the magnetic dipole transition (${}^{5}D_{0} \rightarrow {}^{7}F_{1}$) along with peak at ~617 nm corresponding to the electric dipole transitions (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$). Here, ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ transition has $\Delta j = \pm 1$ and it should have 2 splitting. Whereas, ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition has $\Delta j = \pm 2$ and it should have 3 splitting.

Fig. S9. Decay curves of ${}^{5}D_{0}$ (612 nm) level of Eu³⁺ in Bi-doped YPO₄: Eu³⁺as prepared samples prepared in (a) PEG ($\lambda_{exc} = 395$ nm) and (b) water ($\lambda_{exc} = 395$ nm). (c) 900 °C heated YPO₄: Eu-10Bi samples prepared in PEG-diacid ($\lambda_{exc} = 270$, 395, 465 nm).

Fig. S10. CIE-coordinates obtained from YPO₄:Eu co-doped with different concentrations of Bi^{3+} (0, 10 and 20 at. %) samples prepared in PEG, PEG-diacid and water mediums.

Fig. S11. CIE-coordinates obtained from 900 °C heated YPO₄:Eu co-doped with different concentrations of Bi^{3+} (0, 10 and 20 at. %) samples prepared in PEG-diacid.