Palladium(II)-Catalyzed Sequential *ortho*-Olefination of β-

Arylethamines with Assistance of Oxalyl Amide

Pei Liu, Jian Han, Qian Wang, Zhibin Huang, Daqing Shi, Runsheng Zeng* and Yingsheng Zhao*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123 (PR China)

Supporting Information

Table of Contents

1. Reagents	2
2 Instruments	2
 Screening of Solvents 	2
4 Preparation of oxalyl amide substrates	2
 Alkenvlation of Oxalvl Amide Protected Phenethvlamine 	
6. Sequential Alkenvlation of Oxalvl Amide Protected Phenethylamine	15
7. References	18
8. NMR spectra	
1	

1. Reagents: Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Column chromatography purifications were performed using 300–400 mesh silica gel.

2. Instruments: NMR spectra were recorded on Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, br = broad singlet, m = multiplet. HRMS analyses were carried out using a Bruker microTOF–Q instrument or a TOF–MS instrument.

3. Screening of Solvents

Table 1. Screening of Solvents

H N 1a	N(iPr) ₂ +	Pd(O Ag ₂ C OAc (<i>n</i> -BuO) ₂ solv	Ac) ₂ (5 mol%) O ₃ (1.5 equiv) PO ₂ H (0.3 equiv) ent, 80 °C,18 h 3a	N N (iPr) ₂
	Entry	Solvent	Yield(%) ^[a]	-
	1	Toluene	63	-
	2	PhCl	57	
	3	DCE	80	
	4	DMF	44	
	5	NMP	13	
	6	Dioxane	46	
	7	AcOH	<5	
	8	t-AmylOH	60	
	9	CH ₃ CN	55	
	10	HFIP	24	

[a] Reactions were carried out on a 0.1 mmol scale; yield was based on LC using acetophenone as the internal standard.

4. Preparation of oxalyl amide substrates

4.1. Preparation of N, N-Diisopropyloxamoyl chloride S1^[1]

A solution of Diisopropylamine (7.01 mL, 50 mmol, 1.0 equiv) in CH_2Cl_2 (50 mL) was added dropwise to a solution of oxalyl chloride (6.44 ml, 75 mmol, 1.5 equiv) in CH_2Cl_2 (100 mL) at 0 °C, after stirring for 5 min, triethylamine (7.30 mL, 52.5 mmol, 1.05 equiv) was added dropwise. The solution was warmed to room temperature and stirred for 6 hours. The excess of oxalyl chloride and the solvent were removed under reduce pressure and then CH_2Cl_2 (30 mL) was added and evaporated. This operation was performed twice to give **S1** as a pale yellow solid. The crude product was used in the next step without any purification.

4.2. General procedures for the preparation of oxalyl amide substrates 1a-1i^[2-6]

A solution of β -arylethamine (20 mmol, 1.0 equiv) and triethylamine (2.92 ml, 21 mmol, 1.05 equiv) in CH₂Cl₂ (40 mL) was added dropwise to a solution of N,N–Diisopropyloxamoyl chloride **S1** (25 mmol, 1.25 equiv) in CH₂Cl₂ (50 mL) at 0 °C, then the mixture was stirred for 6 hours at room temperature before quenched by water (50 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (20 mL × 2). The combined organic phase was washed with brine (30 mL), and then dried over anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel afforded corresponding amide substrates as white solid or colourless liquid.

¹H NMR (400 MHz, CDCl₃) δ : 7.32–7.27 (m, 2H), 7.23–7.20 (m, 3H), 7.11 (br, 1H), 4.60–4.53 (m, 1H), 3.58–3.53 (m, 2H), 3.52–3.45 (m, 1H), 2.86 (t, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.8 Hz, 6H), 1.19 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.45, 163.41, 138.68, 128.85, 128.70, 126.62, 49.78, 46.52, 40.53, 35.55, 20.92, 20.16. This compound is known.^[5]

¹H NMR (400 MHz, CDCl₃) δ : 7.22–7.18 (m, 1H), 7.10 (br, 1H), 6.81–6.75 (m, 3H), 4.55 (d, J = 6.4 Hz, 1H), 3.78 (s, 3H), 3.56–3.51 (m, 2H), 3.49–3.45 (m, 1H), 2.82 (t, J = 7.2 Hz, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.46, 159.87, 140.22, 129.68, 121.15, 114.36, 112.18, 55.25, 49.80, 46.50, 40.39, 35.57, 20.90, 20.14. This compound is known.^[5]

¹H NMR (400 MHz, CDCl₃) δ : 7.30 (t, J = 7.6 Hz, 2H), 7.23–7.19 (m, 3H), 6.94 (br, 1H), 4.42– 4.37 (m, 1H), 3.54–3.39 (m, 3H), 3.03–2.94 (m, 1H), 1.38–1.35 (m, 6H), 1.28 (d, J = 7.0 Hz, 3H), 1.16–1.12 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.54, 143.93, 128.72, 127.28, 126.77, 49.83,

¹H NMR (400 MHz, CDCl₃) δ : 7.21 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.2 Hz, 2H), 6.88 (dd, J = 17.8, 7.9 Hz, 2H), 4.63–4.60 (m, 1H), 3.83 (s, 3H), 3.53–3.48 (m, 3H), 2.88 (t, J = 6.7 Hz, 2H), 1.40 (d, J = 6.7 Hz, 6H), 1.19 (d, J = 6.5 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.41, 157.56, 130.64, 128.00, 127.12, 120.69, 110.36, 55.30, 49.64, 46.45, 39.65, 30.13, 20.92, 20.11. This compound is known.^[5]

¹H NMR (400 MHz, CDCl₃) δ : 7.03 (br, 1H), 6.81–6.78 (m, 1H), 6.74 (dd, J = 5.9, 1.8 Hz, 2H), 4.61–4.54 (m, 1H), 3.85 (d, J = 9.5 Hz, 6H), 3.54–3.44 (m, 3H), 2.78 (t, J = 7.1 Hz, 2H), 1.38 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.41, 163.29, 149.09, 147.80, 131.16, 120.77, 112.02, 111.45, 56.00, 55.94, 49.76, 46.54, 40.60, 35.16, 20.91, 20.14. This compound is known.^[6]

¹H NMR (400 MHz, CDCl₃) δ : 7.47 (d, J = 7.7 Hz, 2H), 7.42 (d, J = 5.1 Hz, 2H), 7.17 (br, 1H), 4.61–4.58 (m, 1H), 3.59–3.54 (m, 2H), 3.52–3.45 (m, 1H), 2.92 (t, J = 7.2 Hz, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.47, 163.16, 139.64, 132.32, 131.19, 130.87, 129.19, 125.63, 125.59, 123.62, 123.58, 122.87, 49.82, 46.65, 40.29, 35.39, 20.91, 20.15. This compound is known.^[5]

¹H NMR (400 MHz, CDCl₃) δ : 7.29 (br, 1H), 7.13 (d, J = 4.9 Hz, 1H), 6.94–6.90 (m, 1H), 6.85 (s, 1H), 4.59–4.52 (m, 1H), 3.58–3.53 (m, 6.6 Hz, 2H), 3.51–3.44 (m, 1H), 3.06 (t, J = 6.8 Hz, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.19 (d, J = 6.6 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.50, 163.42, 140.98, 127.09, 125.47, 123.95, 49.81, 46.47, 40.69, 29.63, 20.88, 20.13; HRMS Calcd for

C₁₄H₂₂N₂NaO₂S [M+Na⁺]: 305.1300; Found: 305.1308.

¹H NMR (400 MHz, CDCl₃) δ : 7.22–7.18 (m, 1H), 7.10 (br, 1H), 6.80 (d, J = 7.7 Hz, 1H), 6.77–6.75 (m, 2H), 4.58–4.52 (m, 1H), 3.78 (s, 3H), 3.56–3.51 (m, 2H), 3.49–3.44 (m, 1H), 2.82 (t, J = 7.2 Hz, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.46, 159.87, 140.22, 129.68, 121.15, 114.36, 112.18, 55.25, 49.80, 46.50, 40.39, 35.57, 20.90, 20.14. This compound is known.^[6]

¹H NMR (400 MHz, CDCl₃) δ : 7.24–7,19 (m, 2H), 7.10–7.01 (m, 2H), 6.94 (br, 1H), 4.68–4.61 (m, 1H), 3.58–3.53 (m, 2H), 3.51–3.46 (m, 1H), 2.91 (t, *J* = 7.1 Hz, 2H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.49, 163.27, 162.62, 160.18, 131.20, 131.15, 128.51, 128.43, 125.71, 125.55, 124.32, 124.28, 115.59, 115.37, 49.76, 46.55, 39.38, 29.03, 29.01, 20.93, 20.15. This compound is known.^[5]

5. Alkenylation of Oxalyl Amide Protected Phenethylamine

5.1 Substrates Scope of Amines

A mixture of oxalyl amide (0.2 mmol, 1 equiv), olefin (2 equiv), $Pd(OAc)_2$ (2.2 mg, 0.05 equiv), Ag_2CO_3 (82.8 mg, 1.5 equiv), (*n*-BuO)_2PO_2H (12.6 mg, 0.3 equiv) and DCE (0.6 mL) in a 15 mL glass tube (sealed with PTFE cap) was heated at 80 °C for 18 hours. The reaction mixture was cooled to room tempreture, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the alkenylated product.

¹H NMR (400 MHz, CDCl₃) δ : 7.47 (dd, J = 6.3, 2.7 Hz, 1H), 7.27–7.17 (m, 3H), 7.03 (s, 1H), 6.96 (d, J = 15.7 Hz, 1H), 6.22-6.15 (m, 1H), 4.77-4.75 (m, 2H), 4.72–4.65 (m, 1H), 3.50-3.45 (m, 3H), 2.96–2.92 (m, 2H), 2.12 (s, 3H), 1.41 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 171.05, 163.39, 163.09, 136.17, 135.60, 131.38, 130.08, 128.35, 127.20, 126.62, 125.79, 65.28, 49.73, 46.63, 40.09, 32.96, 21.15, 20.98, 20.16; HRMS Calcd for C₂₁H₃₀N₂O₄ [M+Na⁺]: 397.2203; Found: 397.2215.

¹H NMR (400 MHz, CDCl₃) δ : 7.09 (d, J = 8.4 Hz, 1H), 7.00–6.99 (m, 2H), 6.91 (d, J = 15.7 Hz, 1H), 6.80 (dd, J = 8.4, 2.7 Hz, 1H), 6.21-6.14 (m, 1H), 4.75 (dd, J = 6.3, 1.3 Hz, 2H), 4.72-4.67 (m, 1H), 3.80 (s, 3H), 3.54-3.47 (m, 1H), 3.46-3.40 (m, 2H), 2.94–2.87 (m, 2H), 2.12 (s, 3H), 1.41 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 171.04, 163.37, 163.12, 158.63, 136.58, 131.38, 131.19, 128.53, 125.86, 114.12, 111.66, 65.21, 55.43, 49.73, 46.64, 40.34, 32.18, 21.15, 20.99, 20.16; HRMS Calcd for C₂₂H₃₂N₂O₅ [M+Na⁺]: 427.2209; Found: 427.2218.

¹H NMR (400 MHz, CDCl₃) δ : 7.44 (d, J = 7.5 Hz, 1H), 7.32–7.20 (m, 3H), 7.03 (d, J = 15.6 Hz, 1H), 6.83 (br, 1H), 6.17-6.10 (m, 1H), 4.77–4.75 (m, 2H), 4.55-4.49 (m, 1H), 3.52–3.45 (m, 3H), 3.43-3.33 (m, 1H), 2.13 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.30 (d, J = 6.8 Hz, 3H), 1.18 (dd, J = 6.7, 1.8 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 171.06, 163.51, 163.29, 141.22, 135.81, 131.70, 128.57, 127.21, 126.86, 126.29, 125.65, 65.28, 49.79, 46.55, 45.25, 34.63, 21.16, 20.95, 20.18, 19.10; HRMS Calcd for C₂₁H₃₁N₂O₄ [M+Na⁺]: 411.2260; Found: 411.2278.

¹H NMR (400 MHz, CDCl₃) δ : 7.19-7.15 (m, 2H), 7.07 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 15.7 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.19-6.14 (m, 1H), 4.74 – 4.67 (m, 3H), 3.83 (s, 3H), 3.50 – 3.44 (m, 1H), 3.43-3.38 (m, 1H), 2.98 (t, J = 7.1 Hz, 2H), 2.10 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 170.99, 163.34, 163.07, 157.72, 137.23, 131.35, 127.60, 126.35, 125.10, 119.06, 109.84, 65.20, 55.65, 49.52, 46.56, 39.52, 25.21, 21.11, 20.97, 20.12. HRMS Calcd for C₂₃H₃₄N₂O₆ [M+Na⁺]: 427.2209; Found:427.2220.

¹H NMR (400 MHz, CDCl₃) δ : 7.03 (br, 1H), 7.00 (s, 1H), 6.90 (d, J = 15.6 Hz, 1H), 6.70 (s, 1H), 6.16-6.09 (m, 1H), 4.77–4.70 (m, 3H), 3.91 (s, 6H), 3.56–3.41 (m, 3H), 2.90 (t, J = 7.3 Hz, 2H), 2.13 (s, 3H), 1.43 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 171.11, 163.38, 162.97, 149.20, 148.00, 131.38, 129.05, 127.51, 123.50, 113.00, 109.09, 65.54, 56.07, 49.70, 46.68, 40.37, 32.54, 21.21, 20.99, 20.15; HRMS Calcd for C₂₃H₃₄N₂O₆ [M+Na⁺]: 457.2315; Found: 457.2340.

¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, J = 8.1 Hz, 1H), δ 7.45 (d, J = 8.2 Hz, 1H), 7.42 (s, 1H), 7.20 (br, 1H), 6.97 (d, J = 15.7 Hz, 1H), 6.28-6.21 (m, 1H), 4.77 (dd, J = 6.1, 1.3 Hz, 2H), 4.72 – 4.62 (m, 1H), 3.54–3.44 (m, 3H), 2.99–2.96 (m, 2H), 2.12 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 170.98, 163.46, 162.93, 139.31, 136.90, 130.23, 129.90, 129.85, 128.29, 127.03, 126.84, 126.80, 125.49, 124.00, 123.96, 122.79, 64.85, 49.76, 46.71, 39.86, 32.95, 21.08, 20.94, 20.12; ¹⁹F NMR (376 MHz, CDCl₃) δ : -62.54. HRMS Calcd for C₂₂H₂₉F₃N₂O₄ [M+Na⁺]: 465.1977; Found: 465.1987.

3g

¹H NMR (400 MHz, CDCl₃) δ : 7.14–7.08 (m, 3H), 6.65 (d, J = 15.7 Hz, 1H), 6.13–6.06 (m, 1H), 4.70 (d, J = 6.6 Hz, 2H), 3.53–3.46 (m, 3H), 3.08 (t, J = 7.1 Hz, 2H), 2.08 (s, 3H), 1.40 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 169.98, 162.41, 161.91, 136.50, 134.08, 125.41, 124.57, 122.55, 122.42, 64.39, 48.73, 45.66, 39.75, 26.52, 20.14, 19.98, 19.15; HRMS Calcd for C₁₉H₂₈N₂O₄S [M+Na⁺]: 403.1667; Found: 403.1672.

¹H NMR (400 MHz, CDCl₃) δ : 7.35 (d, J = 8.5 Hz, 1H), 6.90 (br, 1H), 6.75 (dd, J = 8.5, 2.7 Hz, 1H), 6.69 (d, J = 2.6 Hz, 1H), 6.47 (d, J = 15.9 Hz, 1H), 6.02 (d, J = 15.9 Hz, 1H), 4.76-4.67 (m, 1H), 3.79 (s, 3H), 3.53 – 3.47 (m, 3H), 2.89 (t, J = 7.3 Hz, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H), 1.12 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 163.30, 163.04, 158.79, 143.05, 136.81, 130.15, 127.59, 121.29, 114.94, 112.89, 55.43, 49.72, 46.69, 39.79, 33.23, 29.86, 21.01, 20.20; HRMS Calcd for C₂₃H₃₇N₂O₃ [M+H⁺]: 389.2804; Found: 389.2825.

¹H NMR (400 MHz, CDCl₃) δ : 7.21 (d, J = 7.2 Hz, 1H), 7.16-7.11 (m, 1H), 6.94 – 6.87 (m, 2H), 6.54 (d, J = 15.9 Hz, 1H), 6.15 (d, J = 15.9 Hz, 1H), 4.75-4.68 (m, 1H), 3.53-3.44 (m, 3H), 2.99 – 2.95 (m, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H), 1.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ : 163.33, 163.02, 162.81, 160.39, 145.99, 140.19, 127.84, 122.93, 122.06, 121.21, 113.60, 113.37, 49.68, 46.66, 39.12, 33.90, 29.66, 25.10, 20.99, 20.19. ¹⁹F NMR (376 MHz, CDCl₃) δ : - 118.10; HRMS Calcd for C₂₂H₃₃FN₂O₂ [M+H⁺]: 377.2604; Found: 377.2618.

5.2 Substrates Scope of Olefins

A mixture of **1a** (0.2 mmol, 1 equiv), olefin (2 equiv), $Pd(OAc)_2$ (2.2 mg, 0.05 equiv), Ag_2CO_3 (82.5 mg, 1.5 equiv), $(n-BuO)_2PO_2H$ (12.6 mg, 0.3 equiv) and DCE (0.6 mL) in a 15 mL glass tube (sealed with PTFE cap) was heated at 80 °C for 18 hours. The reaction mixture was cooled to room tempreture, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the alkenylated product.

¹H NMR (400 MHz, CDCl₃) δ : 7.65 (d, J = 7.2 Hz, 1H), 7.50 (d, J = 8.1 Hz, 2H), 7.44 (d, J = 16.1

Hz, 1H), 7.30–7.19 (m, 5H), 7.07 (br, 1H), 7.04–6.98 (m, 1H), 4.78-4.71 (m, 1H), 3.57–3.49 (m, 3H), 3.07–3.03 (m, 2H), 2.39 (s, 3H), 1.42 (d, J = 6.8 Hz, 6H), 1.24 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.40, 163.06, 137.76, 136.81, 136.14, 134.80, 131.04, 130.17, 129.52, 127.73, 127.25, 126.78, 126.04, 124.73, 49.74, 46.67, 40.32, 33.14, 21.40, 20.98, 20.16; HRMS Calcd for C₂₅H₃₂N₂O₂ [M+Na⁺]: 415.2361; Found: 415.2378.

¹H NMR (400 MHz, CDCl₃) δ : 7.46–7.44 (m, 1H), 7.23–7.15 (m, 3H), 6.99 (br, 1H), 6.58 (d, J = 15.9 Hz, 1H), 6.15 (d, J = 15.9 Hz, 1H), 4.73-4.67 (m, 1H), 3.55–3.49 (m, 3H), 2.95 (t, J = 7.4 Hz, 2H), 1.43 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H), 1.15 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.31, 163.18, 144.67, 137.50, 135.49, 129.84, 127.13, 127.07, 126.42, 121.87, 49.74, 46.62, 39.80, 33.79, 33.02, 29.74, 20.98, 20.18; HRMS Calcd for C₂₂H₃₄N₂O₂ [M+Na⁺]: 381.2518; Found: 381.2535.

¹H NMR (400 MHz, CDCl₃) δ : 7.54–7.50 (m, 1H), 7.34–7.30 (m, 2H), 7.27–7.23(m, 2H), 7.21– 7.18 (m, 1H), 7.06–6.97 (m, 4H), 6.92 (br, 1H), 6.37-6.30 (m, 1H), 4.79–4.68 (m, 3H), 3.57–3.42 (m, 3H), 2.95–2.91 (m, 2H), 1.44 (d, *J* = 6.8 Hz, 6H), 1.24 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.40, 163.09, 158.63, 136.09, 135.88, 130.13, 130.11, 129.62, 128.19, 127.22, 127.13, 126.64, 121.04, 115.03, 68.56, 49.72, 46.66, 40.14, 33.02, 21.00, 20.18. HRMS Calcd for C₂₅H₃₂N₂O₃ [M+Na⁺]: 431.2311; Found: 431.2334.

¹H NMR (400 MHz, CDCl₃) δ : 7.36–7.30 (m, 5H), 7.22–7.16 (m, 4H), 7.11–7.04 (m, 4H), 6.95–6.86 (m, 3H), 4.76-4.69 (m, 1H), 3.60–3.49 (m, 3H), 2.93 (t, *J* = 7.3 Hz, 1H), 1.41 (d, *J* = 6.8 Hz, 6H), 1.20 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.21, 163.00, 144.27, 143.44, 140.08, 137.27, 137.01, 130.82, 130.65, 129.49, 128.35, 128.29, 128.27, 127.80, 127.39, 127.26, 126.30, 126.25, 49.68, 46.68, 39.76, 33.31, 21.01, 20.19; HRMS Calcd for C₃₀H₃₄N₂O₂ [M+Na⁺]: 477.2518; Found: 477.2518.

¹H NMR (400 MHz, CDCl₃) δ : 7.48–7.46 (m, 1H), 7.24–7.16 (m, 4H), 7.00 (d, J = 15.9 Hz, 1H), 6.28 (d, J = 15.8 Hz, 1H), 4.69–4.62 (m, 1H), 3.53–3.47 (m, 3H), 3.28 (s, 1H), 2.96 (t, J = 7.3 Hz, 2H), 1.44 (s, 6H), 1.42 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H);¹³C NMR (101 MHz, CDCl₃) δ : 163.28, 163.14, 141.07, 136.87, 136.33, 130.05, 127.64, 127.19, 126.48, 123.51, 70.93, 49.92, 46.71, 40.71, 33.27, 29.82, 20.95, 20.19; HRMS Calcd for C₂₃H₃₂N₂O₃ [M+Na⁺]: 383.2311; Found: 383.2331.

¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, J = 16.0 Hz, 1H), 7.62 (d, J = 6.6 Hz, 1H), 7.36–7.32 (m, 1H), 7.30–7.24 (m, 2H), 7.11 (br, 1H), 6.68 (d, J = 16.0 Hz, 1H), 4.74–4.68 (m, 1H), 3.54–3.45 (m, 3H), 3.05–3.01 (m, 2H), 281–2.76 (m, 2H), 1.41 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H), 1.17 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ : 201.38, 163.42, 162.90, 139.21, 138.36, 133.82, 130.63, 130.42, 128.39, 127.47, 126.92, 49.74, 46.70, 40.63, 33.97, 32.99, 20.98, 20.15, 8.30; HRMS Calcd for C₂₅H₃₀N₂O₃ [M+Na⁺]: 381.2154; Found: 381.2167.

¹H NMR (400 MHz, CDCl₃) δ : 7.96 (d, J = 15.2 Hz, 1H), 7.57–7.55 (m, 1H), 7.35–7.31 (m, 1H), 7.27–7.25(m, 2H), 7.04 (br, 1H), 6.82 (d, J = 15.2 Hz, 1H), 4.68–4.61 (m, 1H), 3.53–3.48 (m, 3H), 3.20 (s, 3H), 3.09 (s, 3H), 3.03 (t, J = 7.3 Hz, 2H), 1.42 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 166.66, 163.45, 163.13, 139.61, 137.88, 134.65, 130.58, 129.71, 127.25, 126.85, 119.95, 49.73, 46.58, 40.21, 37.57, 36.08, 32.95, 20.99, 20.16; HRMS Calcd for C₂₁H₃₁N₃O₃ [M+Na⁺]: 396.2263; Found: 396.2275.

¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, J = 16.4 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.42-7.39 (m, 1H), 7.33–7.28 (m, 3H), 7.12 (br, 1H), 5.87 (d, J = 16.4 Hz, 1H), 4.81–4.75 (m, 1H), 3.57–3.47 (m, 3H), 2.99 (t, J = 7.3 Hz, 2H), 1.44 (d, J = 6.8 Hz, 6H), 1.25 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.34, 162.68, 147.83, 137.91, 132.80, 131.32, 130.79, 127.64, 126.23, 118.20, 98.47, 49.72, 46.77, 40.46, 32.74, 21.01, 20.16; HRMS Calcd for C₁₉H₂₅N₃O₂ [M+Na⁺]: 350.1844; Found: 350.1857.

¹H NMR (400 MHz, CDCl₃) δ : 8.19 (d, *J* = 15.9 Hz, 1H), 7.61 (d, *J* = 7.1 Hz, 1H), 7.42 (br, 1H), 7.35–7.23 (m, 3H), 6.41 (d, *J* = 15.8 Hz, 1H), 4.50–4.44 (m, 1H), 4.33–4.31 (m, 2H), 3.90 (s, 2H), 3.77 (s, 1H), 3.55–3.40 (m, 3H), 3.04-3.00 (m, 2H), 1.42 (d, *J* = 6.8 Hz, 6H), 1.23 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 166.99, 164.38, 163.52, 141.83, 138.01, 133.48, 130.66, 130.46, 127.49, 126.73, 119.95, 66.79, 60.88, 50.04, 46.53, 40.88, 33.22, 20.90, 20.11; HRMS Calcd for C₂₁H₃₀N₂O₅ [M+Na⁺]: 413.2052; Found: 413.2070.

¹H NMR (400 MHz, CDCl₃) δ : 8.01–7.97 (m, 3H), 7.65–7.54 (m, 3H), 7.47 (d, J = 7.8 Hz, 1H), 7.38-7.34 (m, 1H), 7.28–7.23 (m, 2H), 7.12 (br, 1H), 6.84 (d, J = 15.2 Hz, 1H), 4.71–4.66 (m, 1H), 3.55–3.46 (m, 3H), 3.04 (t, J = 7.4 Hz, 2H), 1.42 (d, J = 6.8 Hz, 6H), 1.23 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.41, 162.99, 140.61, 139.47, 138.67, 133.56, 131.35, 131.26, 130.80, 129.50, 129.41, 127.87, 127.51, 127.42, 49.79, 46.64, 40.25, 32.86, 20.98, 20.15; HRMS Calcd for C₂₄H₃₀N₂O₄S [M+Na⁺]: 465.1824; Found: 465.1835.

¹H NMR (400 MHz, CDCl₃) δ : 9.76 (d, J = 7.7 Hz, 1H), 7.97 (d, J = 15.7 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.50 (br, 1H), 7.38-7.34 (m, 1H), 7.30-7.26 (m, 2H), 6.67 (dd, J = 15.7, 7.7 Hz, 1H), 4.63-4.56 (m, 1H), 3.53-3.44 (m, 3H), 3.06-3.02 (m, 2H), 1.39 (d, J = 6.8 Hz, 6H), 1.20 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 194.35, 163.68, 163.28, 149.77, 138.57, 133.05, 131.29, 130.76, 130.31, 127.55, 127.14, 49.87, 46.63, 40.69, 32.88, 20.92, 20.10; HRMS Calcd for C₁₉H₂₆N₂O₃ [M+Na⁺]: 353.1841; Found: 353.1860.

¹H NMR (400 MHz, CDCl₃) δ : 7.56–7.50 (m, 2H), 7.22–7.15 (m, 3H), 6.98 (br, 1H), 6.26 (d, J = 14.6 Hz, 1H), 4.70–4.63 (m, 1H), 3.80–3.77 (m, 2H), 3.54–3.44 (m, 3H), 2.94-2.90 (m, 2H), 2.56 (t, J = 8.2 Hz, 2H), 2.22-2.14 (m, 2H), 1.42 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 173.72, 163.57, 163.15, 135.57, 135.42, 130.08, 127.40, 127.09, 125.65, 125.29, 108.98, 49.79, 46.69, 45.59, 40.26, 33.46, 31.51, 20.99, 20.18, 17.63; HRMS Calcd for C₂₂H₃₁N₃O₃ [M+Na⁺]: 408.2263; Found: 408.3386.

¹H NMR (400 MHz, CDCl₃) δ : 8.08 (d, J = 15.7 Hz, 2H), 7.58 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 1H), 7.17 (br, 1H), 6.36 (d, J = 15.7 Hz, 2H), 4.83–4.77 (m, 1H), 4.31–4.25 (m, 4H), 3.53–3.46 (m, 1H), 3.44–3.38 (m, 2H), 3.18–3.14 (m, 2H), 1.40 (d, J = 6.8 Hz, 6H), 1.35 (t, J = 7.1 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 166.66, 163.12, 162.49, 141.67, 136.92, 135.15, 128.71, 127.57, 121.97, 60.82, 49.50, 46.73, 39.91, 28.72, 20.97, 20.08, 14.40; HRMS Calcd for C₂₆H₃₆N₂O₆ [M+Na⁺]: 495.2471; Found: 495.2468.

6. Sequential Alkenylation of Oxalyl Amide Protected Phenylethylamine

A mixture of oxalyl amide (0.5 mmol, 1 equiv), electron-deficient olefin **2** (2 equiv), Pd(OAc)₂ (11 mg, 0.05 equiv), Ag₂CO₃ (206.8 mg, 1.5 equiv), (*n*-BuO)₂PO₂H (31.5g, 0.3 equiv) and DCE

(1.0 mL) in a 15 mL glass tube (sealed with PTFE cap) was heated at 80 °C for 18 hours. Then after the mixture cooled down to rt, the electron rich olefin **2'** (2 equiv), Ag_2CO_3 (206.8 mg, 2 equiv), $(n-BuO)_2PO_2H$ (31.5g, 0.3 equiv) were added into the mixture and reacted for another 24 h at 120 °C. The reaction mixture was cooled to room tempreture, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the sequential alkenylation product.

¹H NMR (400 MHz, CDCl₃) δ : 7.34-7.32 (m, 2H), 7.16 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 15.6 Hz, 1H), 6.63 (d, J = 15.8 Hz, 1H), 6.16–6.05 (m, 2H), 4.81–4.75 (m, 3H), 3.55–3.48 (m, 1H), 3.41–3.36 (m, 2H), 3.02-2.98 (m, 2H), 2.12 (s, 3H), 1.42 (d, J = 6.8 Hz, 6H), 1.22 (d, J = 6.7 Hz, 6H), 1.14 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 171.10, 163.21, 162.92, 145.56, 138.59, 136.40, 133.23, 132.20, 127.06, 126.74, 126.26, 125.65, 122.48, 65.34, 49.63, 46.72, 39.34, 33.86, 29.74, 28.91, 21.19, 21.02, 20.19; HRMS Calcd for C₂₇H₄₀N₂O₄ [M+Na⁺]: 479.2886; Found: 479.2900.

¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, J = 16.4 Hz, 1H), 7.68 (d, J = 7.5 Hz, 1H), 7.51-7.47 (m, 3H), 7.39 (d, J = 7.2 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.22 (br, 1H), 7.18 (d, J = 7.9 Hz, 2H), 6.97 (d, J = 16.0 Hz, 1H), 5.83 (d, J = 16.3 Hz, 1H), 4.93-4.86 (m, 1H), 3.54-3.49 (m, 1H), 3.44–3.38 (m, 2H), 3.14-3.10 (m, 2H), 2.37 (s, 3H), 1.41 (d, J = 6.8 Hz, 6H), 1.24 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.33, 162.33, 148.76, 138.70, 138.19, 135.06, 134.42, 133.83, 132.87, 129.58, 128.98, 127.64, 126.96, 125.51, 124.38, 118.16, 99.17, 49.64, 46.88, 39.92, 28.82, 21.44, 21.03, 20.14; HRMS Calcd for C₂₈H₃₃N₃O₂ [M+Na⁺]: 466.2470; Found: 466.2486.

¹H NMR (400 MHz, CDCl₃) δ : 8.05 (d, J = 15.1 Hz, 1H), 8.00 – 7.98 (m, 2H), 7.63–7.52 (m, 3H), 7.44 (d, J = 7.5 Hz, 1H), 7.31 (d, J = 7.0 Hz, 1H), 7.18 (t, J = 7.7 Hz, 2H), 6.80 (d, J = 15.1 Hz, 1H), 6.65 (d, J = 15.8 Hz, 1H), 6.07 (d, J = 15.8 Hz, 1H), 4.84 – 4.73 (m, 1H), 3.55-3.47 (m, 1H), 3.40 – 3.32 (m, 2H), 3.09-3.05 (m, 2H), 1.42 (d, J = 6.8 Hz, 6H), 1.24 (d, J = 6.7 Hz, 6H), 1.13 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.19, 162.83, 146.49, 140.71, 140.51, 139.59, 135.42, 133.51, 132.01, 129.90, 129.58, 129.48, 127.91, 127.35, 126.08, 122.05, 49.73, 46.72, 39.56, 33.94, 29.63, 29.04, 21.01, 20.18; HRMS Calcd for C₃₀H₃₀N₂O₄S [M+Na⁺]: 547.2606; Found: 547.2634.

¹H NMR (400 MHz, CDCl₃) δ : 8.07 – 8.00 (m, 3H), 7.64 – 7.60 (m, 1H), 7.57 – 7.53 (m, 2H), 7.38-7.35 (m, 2H), 7.34 – 7.31 (m, 3H), 7.26 – 7.23 (m, 1H), 7.20-7.17 (m, 3H), 7.14-7.11 (m, 2H), 7.05-7.02 (m, 2H), 6.93-6.88 (m, 2H), 6.80 (d, J = 15.1 Hz, 1H), 4.88-4.78 (m, 1H), 3.55-3.48 (m, 1H), 3.48 – 3.41 (m, 2H), 3.15 – 3.11 (m, 2H), 1.42 (d, J = 6.8 Hz, 6H), 1.21 (d, J = 6.7 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.02, 162.55, 145.42, 142.85, 140.77, 140.33, 139.59, 138.86, 137.22, 133.51, 132.01, 130.77, 129.84, 129.49, 128.37, 128.29, 128.01, 127.99, 127.51, 126.71, 126.21, 125.66, 49.63, 46.79, 39.64, 27.55, 21.03, 20.17; HRMS Calcd for C₃₈H₄₀N₂O₄S [M+Na⁺]: 643.2606; Found: 643.2601.

¹H NMR (400 MHz, CDCl₃) δ : 7.19–7.12 (m, 4H), 6.95 (d, J = 2.7 Hz, 1H), 6.67 – 6.61 (m, 3H), 6.13 (d, J = 15.8 Hz, 1H), 4.69–4.63 (m, 1H), 3.78 (s, 3H), 3.49–3.43 (m, 1H), 3.25–3.19 (m, 2H), 2.79–2.75 (m, 2H), 2.38 (s, 3H), 1.37 (d, J = 6.8 Hz, 6H), 1.13–1.13 (m, 15H); ¹³C NMR (101 MHz, CDCl₃) δ : 163.01, 162.72, 157.66, 145.28, 144.28, 139.64, 139.20, 136.78, 129.02, 125.73, 122.86, 114.36, 111.42, 55.38, 49.51, 46.60, 39.68, 33.86, 29.72, 28.77, 21.30, 20.94, 20.15; HRMS Calcd for C₂₈H₄₂N₂O₅ [M+Na⁺]: 509.2991; Found: 509.3002.

7. References

- [1] Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 10806.
- [2] Xu, G.; Gilbertson, S. R. Org. Lett. 2005, 7, 4605.
- [3] He, G.; Lu, C.; Zhao, Y.; Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2944.
- [4] Berry, J. M.; Bradshaw, T. D.; Fichtner, I.; Ren, R.; Schwalbe, C. H.; Wells, G.; Stevens, M. G.

and Westwell, A. D. J. Med. Chem. 2005, 48, 639.

[5]C. Wang; C.-P. Chen; J.-Y. Zhang; Y.-M. Yao; Y.-S. Zhao, *Angew. Chem.* **2014**, *126*, 10042-10046; *Angew. Chem., Int. Ed.* **2014**, *53*, 9884-9888.

[6]J. Han; P. Liu; C. Wang; Q. Wang; J.-Y. Zhang; Y.-W. Zhao; D.-Q. Shi; Z.-B. Huang; Y.-S. Zhao, *Org. Lett.* **2014**, *16*, 5682-5685.

8. NMR spectra

S23

