Electronic Supplementary Information (ESI)

MoS₂ armored polystyrene particles with a narrow size distribution via membrane-assisted Pickering emulsions for monolayer-shelled liquid marbles

Yu Yang, Yang Hu,* Qi Zhang, Guangzhao Zhang, Zhenjun Liu, and

Chaoyang Wang*

Research Institute of Materials Science, South China University of Technology, Guangzhou, China. E-mail: mshuyang@scut.edu.cn, zhywang@scut.edu.cn

Materials

MoS₂ was achieved from Afar Sally chemical co., LTD, Tianjing, China. C₄H₉Li, AIBN, hexadecane were supplied from lark technology co., LTD, Beijing, China. Liquid paraffin and n-hexane were purchased from Qiangsheng chemical co., LTD, Jiangsu, China. Styrene was purchased from Damao chemical co., LTD, Tianjing, China. BaCl₂·2H₂O was obtained from Fuchen chemical co., LTD, Tianjing, China. Water used in all experiments was purified with a resistivity higher than 18.0 M Ω cm by deionization and filtration with a Millipore purification apparatus.

Preparation of MoS₂ aqueous dispersion

Chemical exfoliated MoS₂ was synthesized by lithium intercalation and exfoliation method. Briefly, 1.0 g of natural MoS₂ powder was dispersed in 10 mL of 1.6 M butyllithium solution in hexane for 72 hours in a flask under nitrogen. Li-intercalating MoS₂ (LixMoS₂) was retrieved by filtration and washed with hexane (120 mL) to remove excess lithium and organic residues. Exfoliation of MoS₂ was accomplished by sonication the as-prepared LixMoS₂ slurry in 1 L water for 1 h. The MoS₂ aqueous dispersion was then centrifuged and re-dispersed in water for at least 3 times to remove excess lithium in the form of Li(OH).

Preparation of MoS₂-stabilized Pickering emulsion

A typical MoS₂-stabilized Pickering emulsion was fabricated as follows. To enhance the stability of the droplet, BaCl₂·2H₂O (45 mg) was added to a MoS₂ aqueous dispersion (4 mg/mL). Then 2.5 mL of styrene with 1 wt% AIBN was added. Emulsification was performed by vigorous agitation of water and oil phase for 3 min using IKA Ultra Turrax t25 basic instrument at 10 000 rpm, and a MoS₂-stabilized Pickering emulsion was obtained.

Fabrication of MoS_2 armored polystyrene (PS) particles with a narrow size distribution

To preparation of MoS_2 armored PS particles with a narrow size distribution, emulsion droplets with a narrow size distribution were prepared by a membrane-assisted re-emulsification based on a hand-driven mini-extruder (Avanti Polar Lipids, Inc.) containing two 1 mL syringes. The two poly(vinylidene fluoride) filtering membranes (Shanghai Xingya Scavenging-Materials Inc., China) used in this study had opening pores with 7.5 μ m in diameter. 1 mL of the emulsions prepared by vigorous agitation were drawn into the syringes and pushed back and forth through the membranes, exchanging between the syringes on either side of the device. After a certain passing times (such as 100 times), the emulsions were transferred to a glass bottle and polymerized in an oven at 60 °C for 8 h. the resulting MoS_2 armored PS particles were purified by three centrifugation/re-dispersion cycles, replacing each decanted supernatant with deionized water., followed by drying overnight in a vacuum at 45 °C for 12 h. the final product obtained was a gray powder.

Preparation of liquid marbles with a monolayer shell

To prepare of liquid marbles with a monolayer shell, water droplets were deposited onto the dried MoS₂ armored PS particle powder bed using a syringe. By gently rolling the droplet on the powder bed, the liquid was entirely encapsulated by the MoS₂ armored PS particles, resulting in a liquid marble. Then, the liquid marble was transferred to a polypropylene mesh which was placed on an M-shaped rigid aluminum foil. Then, the obtained sample was placed in a closed glass bottle containing 2 mL of toluene. After 20 sec, the liquid marbles was taken out and liquid marbles with monolayer-shelled were obtained.

Characterization

Pickering emulsions were observed with a microscope (Carl Zeiss, Germany). The zeta potential was measured using a Malvern Zeta Sizer Nano ZS90. Atomic force microscopy (AFM) was conducted on a Bruker Multi Mode 8 operated in a tapping mode. Transmission electron microscopy (TEM) was conducted on JEOL2100. The average diameter of the emulsion droplets and particles were determined with a laser scattering particle size distribution analyzer (Malvern Mastersizer 2000). The confocal micrographs were taken with a Leica TCS-SP2 confocal laser scanning microscope. Morphologies of the particles and liquid marbles were analyzed using a Zeiss EVO 18 scanning electron microscope (SEM) equipped with a field emission electron gun and energy dispersive spectrometer (EDS). For the SEM observation of the shell of liquid marbles, the specimen was first scattered onto a conductive tap, then sliced using a sharp razor blade, and afterwards sputter coated with gold.

Table S1. Elementa	I analysis of th	e MoS ₂ -armored I	PS particles.
--------------------	------------------	-------------------------------	---------------

Element	С	0	Мо	S
Weight %	84.27	13.1	1.12	1.29

Fig. S1. (a) AFM and (b) TEM images of ce-MoS $_2$, (c) the height profile of the red line in a.

Fig. S2. Photos of (a) bulk MoS_2 and (b) ce- MoS_2 dispersed in water. (c) The zeta potential of ce- MoS_2 with a concentration of 4mg/mL in water.

Fig. S3. Optical microscopy images of styrene-in-water Pickering emulsions stabilized by different ce-MoS₂ concentrations: (a) 0.5, (b) 1.0, and (c) 2.0 mg/mL. The insets of a-c are the photos of their corresponding emulsions. (d) The corresponding size distribution curves of the Pickering emulsions. The styrene to water ratio is 1:3.

Fig. S4. Optical microscopy images of MoS_2 nanosheet-stabilized O/W Pickering emulsions with different oil phases: (a) liquid paraffin, (b) toluene, (c) n-hexane, and (d) hexadecane. The insets of a-d are the photos of their corresponding emulsions. The oil to water ratio is 1:3, and the MoS_2 concentration is 4mg/mL.

Fig. S5. The size distribution curves of the Pickering emulsions in Fig. S4.

Fig. S6. Optical microscopy images of MoS_2 nanosheet-stabilized styrene/water Pickering emulsion droplets by membrane extrusion after (a) 25 passing times and (b) 50 passing times. The styrene to water ratio is 1:3, and the MoS_2 concentration is 4 mg/mL.