Phenylphosphinacalix[3]trifuran: Synthesis, Coordination and Application in Suzuki-Miyaura cross-coupling reaction in water

Yue Sun, ${ }^{\text {a }}$ Meng-Qi Yan, ${ }^{\mathrm{c}}$ Yan Liu, ${ }^{\mathrm{c}}{ }^{2} \mathrm{Ze}-Y u$ Lian, ${ }^{\mathrm{b}}$ Tong Meng, ${ }^{\text {a }}$ Sheng-Hua Liu, ${ }^{\text {a }}$ Jian Chen, ${ }^{\text {a }}$ Guang-Ao Yu*a
${ }^{a}$ Key Laboratory of Pesticide \& Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, China. E-Mail: yuguang@mail.ccnu.edu.cn, chshliu@mail.ccnu.edu.cn
${ }^{b}$ State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
${ }^{c}$ State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
E-Mail: yuguang@mail.ccnu.edu.cn

Table of Contents

1. General methods and experimental details $\cdot 2$
2. Table S1- Table S6 6
3. The X-ray structure of compounds 2-5 10
4. Spectra data of the products $\mathbf{2 - 5}$ and \mathbf{C} 12
5. ${ }^{1}$ H NMR spectra of Suzuki-Miyaura coupling Products 34
6. References 48

1. Experimental Section

General methods and experimental details

Schlenk- and vacuum-line techniques were employed for all manipulations. All solvents were distilled from appropriate drying agents under argon before use. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Mercury-Plus spectrometer (400 MHz). Mass spectra (EI-MS) were recorded on a HP 5989B Mass Spectrometer. Elemental analyses were performed on a Perkin-Elmer 240 C analyzer.

Phenylphosphinacalix[3]trifuran (1).

In a 100 mL flask, furan ($5.0 \mathrm{~mL}, 69 \mathrm{mmol}$) was dissolved in THF (40 mL) under an argon atmosphere. The mixture was cooled to $-78^{\circ} \mathrm{C}$, and ${ }^{n} \mathrm{BuLi}(30 \mathrm{~mL}, 2.5 \mathrm{~mol} / \mathrm{L}$ solution in hexane, 75 mmol) was added. The solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then for 2 h at ambient temperature. Then the mixture was cooled to $-60^{\circ} \mathrm{C}$ and PhPCl_{2} ($4.7 \mathrm{~mL}, 34.5 \mathrm{mmol}$) was added. The mixture was warmed to room temperature and stirred for additional 2 h . The mixture was cooled to $-60^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}$ ($30 \mathrm{~mL}, 2.5 \mathrm{~mol} / \mathrm{L}$ solution in hexane, 75 mmol) was added. The solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then for 4 h at ambient temperature. Then the mixture was cooled to $-60^{\circ} \mathrm{C}$ and $\mathrm{PhPCl}_{2}(4.7 \mathrm{~mL}, 34.5 \mathrm{mmol})$ was added. The mixture was warmed to room temperature and refluxed for 24 h . The LiCl that formed was removed by filtration over a pad of Celite. The resulting filtrate was treated dropwise with water. The organic layer was then separated from the aqueous layer, dried over MgSO_{4}, and filtered. After evaporation of solvent in vacuo, the residue was subject to column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane} 3: 1$) to give a white solid (523 mg , 4% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59-7.62(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.28-7.30(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ph}-\mathrm{H}), 6.15-7.17$ (m, 6H, Ph-H), 6.80 (s, 6H, 2-furyl-H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): 156.60,134.34,133.52,133.32,128.65,128.08,128.00,121.76 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-61.95$ (s) ppm. EI-MS (m/z): $522[\mathrm{M}]^{+}$, Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}_{3}$: C, 68.97, H, 4.05; found: C, 68.80, H, 4.25.

Phenylphosphinacalix[3]trifuran trioxide (2).

In a 50 mL flask, compound $\mathbf{1}(42 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{H}_{2} \mathrm{O}_{2}(1.0 \mathrm{~mL}, 30 \%, 8.8 \mathrm{mmol})$ was added slowly. The solution was stirred for 24 h at ambient temperature. The organic layer was then separated from the aqueous layer, dried over MgSO_{4}, and filtered. After evaporation of solvent in vacuo, the residue was subject to column chromatography (silica, THF/hexane 3:1) to give a white solid ($28 \mathrm{mg}, 58 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.80-7.85(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.60-7.62(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.40-7.43(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 7.33 (s, 6H, 2-furyl-H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 153.18, 133.08, 130.93, 130.82, 128.71, 128.58, $121.71 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.62$ (s) ppm. EI-MS (m/z): $570[\mathrm{M}]^{+}$, Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{P}_{3}$: C, 63.17, H, 3.71; found: C, 62.95, H, 3.78.

Phenylphosphinacalix[3]trifuran trisulfide (3).

In a 50 mL flask, compound $1(42 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in THF (10 mL) under an argon atmosphere. Element sulfur ($16 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. The mixture was refluxed for 24 h . After evaporation of solvent in vacuo, the residue was subject to column chromatography (silica, THF/hexane 5:1) to give a yellow solid (44 $\mathrm{mg}, 91 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-7.94$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), $7.55-7.57$ (m, 3H, Ph-H), 7.33-7.38(m, 12H, Ph-H, 2-furyl-H) ppm. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $154.58,132.39,131.14,131.02,128.60,122.74,122.60 \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.01$ (s) ppm. EI-MS (m/z): $618[\mathrm{M}]^{+}$, Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{~S}_{3}$: C, 58.25, H, 3.42; found: C, $57.98, \mathrm{H}, 3.64$.

Phenylphosphinacalix[3]trifuran triselenide (4).

In a 50 mL flask, compound $\mathbf{1}(42 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ under an argon atmosphere. Element selenium ($39.5 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. The mixture was refluxed for 24 h . After evaporation of solvent in vacuo, the residue was subject to column chromatography (silica, THF/hexane 5:1) to give a red solid (55 mg , 92% yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.82-7.91$ (m, $6 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), 7.55-7.60 (m, $3 \mathrm{H}, \mathrm{Ph}-\mathrm{H}$), $7.33-7.53\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}-\mathrm{H}, 2\right.$-furyl-H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 153.52, 132.04, 131.34, 131.21, 131.13, 128.38, 128.25, 123.56 ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.17\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{P}-\mathrm{Se}}=821 \mathrm{~Hz}\right) \mathrm{ppm}$. EI-MS (m/z): $762[\mathrm{M}]^{+}$, Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{Se}_{3}$: C, 47.46, H, 2.79; found: C, $47.40, \mathrm{H}, 2.88$.

2, 4-bis(2-furylphenylphosphino)furan C.

In a 100 mL flask, furan ($5.0 \mathrm{~mL}, 69 \mathrm{mmol}$) was dissolved in THF (40 mL) under an argon atmosphere. The mixture was cooled to $-78^{\circ} \mathrm{C}$, and ${ }^{n} \mathrm{BuLi}(30 \mathrm{~mL}, 2.5 \mathrm{~mol} / \mathrm{L}$ solution in hexane, 75 mmol) was added. The solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then for 2 h at ambient temperature. Then the mixture was cooled to $-60^{\circ} \mathrm{C}$ and $\mathrm{PhPCl}_{2}(4.7 \mathrm{~mL}, 34.5 \mathrm{mmol})$ was added. The mixture was warmed to room temperature and stirred for additional 2 h . The mixture was cooled to $-60^{\circ} \mathrm{C}$ and ${ }^{n} \mathrm{BuLi}$ ($30 \mathrm{~mL}, 2.5 \mathrm{~mol} / \mathrm{L}$ solution in hexane, 75 mmol) was added. The solution was stirred for 30 min at $-78^{\circ} \mathrm{C}$ and then for 4 h at ambient temperature. The LiCl that formed was removed by filtration over a pad of Celite. The resulting filtrate was treated dropwise with water. The organic layer was then separated from the aqueous layer, dried over MgSO_{4}, and filtered. After evaporation of solvent in vacuo, the residue was subject to column chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane} 3: 1$) to give a white solid ($1531 \mathrm{mg}, 16 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61$ (br, 2 H , furyl-H), 7.40-7.43 (m, 4H, Ph-H), 7.24-7.30 (m, 6H, Ph-H), 6.65-6.72 (m, 4H, furyl-H), 6.37-6.39 (m, 2H, furyl-H) ppm. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 156.08, 155.95, 150.27, 147.30, 134.46, 134.38, 132.86, 132.66, 128.90, 128.34, 128.26, 121.91, 121.66, 121.52, 121.42, 121.30, 121.21, 110.70, 110.66 ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-53.05$ (s) ppm. EI-MS (m/z): $416[\mathrm{M}]^{+}$, Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{P}_{2}$: C, 69.24, H, 4.36; found: C, 69.20, H, 4.32 .

$\left[\mathrm{PdCl}_{2}\right]\{\text { Phenylphosphinacalix[3]trifuran }\}_{2}$ (5)

In a 50 mL flask, Phenylphosphinacalix[3]trifuran (1) ($26 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ under an argon atmosphere. A solution of $\mathrm{PdCl}_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}(13 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added slowly. After addition, the reaction mixture was stirred for 2 h at room temperature to give a green solution. The solution was carefully layered with 3 mL of methanol. After the mixture stood for 1 day, a red precipitate formed, which was filtered, washed with methanol, and dried in vacuo, a 28 mg amount (80%) of 5 as a red crystal was obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.17$ (br, 4H), 7.75 (br, 4H), 7.51-7.38 (m, 30H), 6.48 (br, 4H) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz , DMSO- d_{6}): $\delta-5.19$ (s, 4P), -53.46 (s, 2P) ppm. Anal. Calcd for $\mathrm{C}_{60} \mathrm{H}_{42} \mathrm{Cl}_{4} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Pd}_{2}$: C, 51.49, H, 3.02; found: C, 51.42, H, 3.20.

General Procedures for Reaction Condition Screenings.

Pd source (0.05 mmol), phosphine ligand $1(0.05 \mathrm{mmol})$ and phase transfer reagent (10 mmol) were dissolved in water (10 mL). The resulting solution was stirred at room temperature for 5 minutes before immediate use. The aqueous solution of the catalyst (1.0 mL) containing Pd scource (0.005 mmol), phosphine ligand 1 (0.005 $\mathrm{mmol})$ and phase transfer reagent (1.0 mmol) was loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar. Bromobenzene ($112 \mathrm{mg}, 1.0 \mathrm{mmol}$), 4-methoxyphenylboronic acid ($182 \mathrm{mg}, 1.2 \mathrm{mmol}$), base (3.0 mmol) and water (1.0 mL) were added. The tube was evacuated and flushed with nitrogen for three times, placed into a preheated oil bath $\left(100^{\circ} \mathrm{C}\right)$ and stirred for 8 h . After completion of reaction, the reaction tube was allowed to cool to room temperature. Ethyl acetate (10 $\mathrm{ml})$ and dodecane ($22.6 \mathrm{mg}, 0.1 \mathrm{mmol}$, internal standard) were added. The organic layer was subjected to GC analysis. The GC yield obtained was previously calibrated by authentic sample/dodecane calibration curve. The product was purified by column chromatography (hexane/ethyl acetate as eluent).

General Procedure for Suzuki-Miyaura Cross-Coupling Reaction in Water.

$\operatorname{Pd}(\mathrm{OAc})_{2}(11 \mathrm{mg}, 0.05 \mathrm{mmol})$ and ligand $\mathbf{1}(0.05 \mathrm{mmol})$ were dissolved in water
$(10 \mathrm{~mL})$. The resulting solution was stirred at room temperature for 5 minutes before immediate use. The aqueous solution of the catalyst (1.0 mL) containing $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(1.1 \mathrm{mg}, 0.005 \mathrm{mmol})$ and ligand $1(6.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ was loaded into a Schlenk tube equipped with a Teflon-coated magnetic stir bar. Aryl halide (1.0 mmol), arylboronic acid (1.2 mmol), base (3.0 mmol) and water $(1.0 \mathrm{~mL})$ were added. The tube was evacuated and flushed with nitrogen for three times, and then placed into a preheated oil bath $\left(100^{\circ} \mathrm{C}\right)$ for 8 h . After completion of reaction, the reaction tube was allowed to cool to room temperature, water was draw with dropper and the reaction mixture was adsorbed onto silica gel, and then purified by column chromatography (hexane/ethyl acetate as eluent) to afford the desired product.

Crystallographic Studies

Crystals of 2-4 for X-ray diffraction were obtained by recrystallization of the pure product from $\mathrm{CHCl}_{3} /$ hexane layers, crystals of $\mathbf{5}$ were obtained by recrystallization of the pure product from $\mathrm{CHCl}_{3} /$ methanol layers. Crystallographic data was collected on a Bruker SMART CCD area-detector diffractometer with graphite-monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Diffraction measurements were made at room temperature. An absorption correction by SADABS was applied to the intensity data. The structures were solved by Patterson method. The remaining non-hydrogen atoms were determined from the successive difference Fourier syntheses. All non-hydrogen atoms were refined anisotropically except those mentioned otherwise. The hydrogen atoms were generated geometrically and refined with isotropic thermal parameters. The structures were refined on F^{2} by full-matrix least-squares methods using the SHELXTL-97 program package. The crystal data and structural refinements details are listed in Table S1.

Table S1 Crystal data and structure refinement for 2-5

	2	3	4	5
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{10.5} \mathrm{O}_{3} \mathrm{P}_{1.5}$	$\begin{aligned} & \mathrm{C}_{31} \mathrm{H}_{22} \mathrm{Cl}_{3} \\ & \mathrm{O}_{3} \mathrm{P}_{3} \mathrm{~S}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{60.5} \mathrm{H}_{42.5} \mathrm{Cl}_{11.5} \\ & \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{Se}_{6} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{44} \mathrm{Cl}_{10} \mathrm{O}_{6} \mathrm{P}_{6} \mathrm{P} \\ & \mathrm{~d}_{2} \end{aligned}$
Formula weight	285.19	737.93	1578.2	1638.09
Temperature (K)	200(2)	200(2)	200(2)	298(2)
Crystal system	Triclinic	Orthorhombic	Triclinic	Monoclinic
Space group	P-1	Pnma	P-1	P2(1)/m
a (A)	8.664(3)	11.0433(12)	11.165(2)	9.319(2)
b (A)	12.433(5)	16.6075(19)	12.927(3)	19.982(4)
c (\AA)	13.034(5)	18.186(2)	21.775(4)	18.209(4)
$\alpha\left({ }^{\circ}\right.$)	90.964(6)	90	83.949(3)	90
$\beta\left({ }^{\circ}\right.$)	90.323(6)	90	84.534(3)	92.581(4)
$\gamma\left({ }^{\circ}\right)$	106.542(6)	90	77.702(3)	90
Volume (\AA^{3})	1345.7(9)	3335.3(6)	3044.9(10)	3387.4(13)
$\mathrm{Z}, D_{\text {calc }}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	4, 1.408	4,1.470	2, 1.721	2, 1.606
Abs coefficient (mm^{-1})	0.265	0.639	3.879	1.116
$F(000)$	588	1504	1546	1632
Crystal size (mm^{3})	$\begin{aligned} & 0.23 \times 0.20 \times 0.2 \\ & 0 \end{aligned}$	$0.16 \times 0.12 \times 0.10$	$0.16 \times 0.15 \times 0.12$	$0.12 \times 0.10 \times 0.10$
θ range (${ }^{\circ}$)	1.56-25.00	2.48-25.02	1.62-25.00	1.02-23.71
Reflections collected	8170	19984	20584	20365
Independent reflections	4637	3040	10542	5188
Completeness to θ (\%)	97.5	99.5	98.3	97.6
Max. and min. transmission	$0.9489,0.9416$	0.9389, 0.9047	0.6532, 0.5757	0.8966, 0.8778
Data/restraints/param s	4637/0/354	3040/6/220	10542/30/733	5188/1/383
Goodness-of-fit on F^{2}	1.062	1.108	1.075	1.113
R_{1} and $w R_{2}[1>2 \sigma(I)]$	0.0672, 0.2008	0.0657, 0.2091	0.0810, 0.2066	0.1030, 0.2645
R_{1} and $w R_{2}$ (all data)	0.0909, 0.2280	0.0825, 0.2237	0.1081, 0.2184	0.1176, 0.2747

Table S2 Optimization of the reaction conditions ${ }^{a}$

Entry	Pd source	Phase Transfer Reagent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Yield $(\%)^{b}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-	100	98
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	TBAB	100	89
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Me}(\text { octyl })_{3} \mathrm{~N}^{+} \mathrm{Cl}^{-}$	100	97
4	$\mathrm{PdCl}_{2}(\mathrm{CN})_{2}$	-	100	18
5	PdCl_{2}	-	100	53
6	$\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Pd}_{2} \mathrm{Cl}_{2}$	-	100	56
7	5	-	100	89
8	$\operatorname{Pd}(\mathrm{OAc})_{2}$	-	25	5
9	$\operatorname{Pd}(\mathrm{OAc})_{2}$	-	60	58
10	$\operatorname{Pd}(\mathrm{OAc})_{2}$	-	80	74

${ }^{a}$ Reaction conditions: 1.0 mmol of bromobenzene, 1.2 mmol of phenylboronic acid, 1.0 mmol phase transfer reagent, $0.5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 0.5 \mathrm{~mol} \%$ ligand, 3.0 mmol of $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, reaction time $8 \mathrm{~h} .{ }^{b} \mathrm{GC}$ yield.

Table S3 Suzuki-Miyaura coupling reaction using ultra-low loading of catalyst ${ }^{a}$

Table S4 Suzuki-Miyaura coupling reaction using ultra-low loading of catalyst ${ }^{a}$

Entry	Time (h)	Yield (\%) ${ }^{\text {b }}$	TON
1	16	5	2500000
2	24	9	4500000
3	48	17	8500000
4	72	51	25500000
${ }^{a}$ Reactio bromobe phenylbo $1.33 \times 10^{-}$ $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3$		$\begin{aligned} & \text { ns: } 1.0 \\ & \text { mmol } \quad \text { of } \\ & 2 \times 10^{-8} \mathrm{~mm} \\ & \text { ligand, } \\ & \mathrm{H}_{2} \mathrm{O} .{ }^{b} \mathrm{GC} \text { yi } \end{aligned}$	mmol of 2-methoxy $\mathrm{Pd}(\mathrm{OAc})_{2}$, mmol of d.

Table S5 Suzuki-Miyaura coupling reaction using ultra-low loading of catalyst ${ }^{a}$

Ligand

Entry	Time (h)	Yield (\%) ${ }^{\text {b }}$	TON
1	16	15	750000
2	24	20	10000000
3	48	26	13000000
4	72	30	15000000
bromobenzene, 1.2 mmol of phenylboronic acid, $2 \times 10^{-8} \mathrm{mmol} \mathrm{Pd}(\mathrm{OAc})_{2}, 4 \times 10^{-8} \mathrm{mmol}$ ligand, 3.0 mmol of $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}, 2.0 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. ${ }^{b} \mathrm{GC}$ yield.			

Table S6 Suzuki-Miyaura coupling reaction using ultra-low loading of catalyst ${ }^{a}$

Entry	Time (h)	Yield (\%) ${ }^{\text {b }}$	TO
1	16	8	4000
2	24	14	7000
3	48	21	11500
4	72	32	16000
${ }^{a}$ Reactio bromobe acid, $2 \times$ ligand, 3. ${ }^{b}$ GC yiel	conditio zene, 1.2 $0^{-8} \mathrm{mmol}$ mmol of	ns: 1.0 mmol of $\mathrm{d}(\mathrm{OAc})_{2}, 1$. $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	mmol henylbo $\times 10^{-8}$ 2.0 mL

Figure S1 Molecular structure of $\mathbf{3}$ with 30% probability level ellipsoids.

Figure S2 Molecular structure of $\mathbf{4}$ with 30% probability level ellipsoids.

Figure S3 A Chinese Bronze Tripod.
The molecular structures of 2-4 look like an ancient cauldron with three legs

Figure S4 Molecular structure of $\mathbf{5}$ with 30% probability level ellipsoids.

Figure S5 Si Muwu square vessel (an ancient cauldron with four legs). The molecular structure of $\mathbf{5}$ looks like an ancient cauldron with four legs
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectra of compounds $\mathbf{1 - 5}$ and C
20110412 600MHz
Sample: suny040
Solvent: cdc 13
Date: Nov 82011
cole
189.92
$000 \cdot \angle 2$
$918 . \angle L$

ut. 9 St

Samp File: PHOSPHORUS
Pulse Sequence: s2pul
Ch

200	150	100	50	0	-50	-100	-150	-200	-250	ppm

suny 040 d cdci3
C13
20111219

cose

286.851
$620.05 T$
IUT.SSI

200
coses

$$
\begin{aligned}
& \text { suny045 cacl3 } \\
& \text { p31 } \\
& 20111122
\end{aligned}
$$

```
S\#437 RT: 3.26 AV: 1 SB: 343 0.73-3.02, 3.47-3.69 NL: 1.46E5
```

100
95
90
08
$\stackrel{n}{n}$
안
$65=$
55
eafunazongery

${ }^{31} P$ NMR spectra of the reaction mixture about possible mechanism for the formation of 1.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{P}$ NMR spectra of 5

${ }^{1} \mathbf{H}$ NMR of $5\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathbf{P}$ NMR of $5\left(162 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1}$ H NMR spectra of Suzuki-Miyaura coupling Products

1,1'-biphenyl,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59$ (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.43 (t, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.34 $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm}$. Data is consistent with that reported in the literature. ${ }^{1}$

4-nitro-1,1'-biphenyl,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm}$. Data is consistent with that reported in the literature. ${ }^{2}$

4-Methoxybiphenyl,
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.56-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. Data is consistent with that reported in the literature. ${ }^{3}$

$\begin{array}{lll}\stackrel{8}{4} & 8 \\ 1 & \stackrel{8}{1} & \text { i }\end{array}$

2-phenylthiophene,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.59$ (m, 2H), 7.39-7.27 (m, 5H), 7.09 (d, $J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm}$. Data is consistent with that reported in the literature. ${ }^{4}$

4-nitro-1,1'-biphenyl,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.50-7.45 (m,3H) ppm. Data is consistent with that reported in the literature. ${ }^{2}$

Abstract

 [1,1'-biphenyl]-2-carbaldehyde, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{5}$

1-([1,1'-biphenyl]-4-yl)ethanone,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.47(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{6}$

1-(4-(naphthalen-1-yl)phenyl)ethanone,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09$ (br, 2H), 7.92 (br, 2H), 7.85 (br, 1H), 7.62 (br, $2 \mathrm{H}), 7.52(\mathrm{br}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{7}$

 1717

$\stackrel{8}{8}$

1-(4'-Methoxy-[1, 1'-biphenyl]-4-yl) ethanone,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. Data is consistent with that reported in the literature. ${ }^{8}$

1-(2'-methyl-[1,1'-biphenyl]-4-yl)ethanone,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29-7.23 (m, 4H), $2.65(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{9}$

$\stackrel{4}{8}$ है

1-(2'-methoxy-[1,1'-biphenyl]-4-yl)ethanone,
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{6}$

$\stackrel{8}{8}$

2-methyl-1,1'-biphenyl
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43-7.24(\mathrm{~m}, 9 \mathrm{H}), 2.27$ (s, 3H) ppm. Data is consistent with that reported in the literature. ${ }^{10}$

2,5-dimethyl-1,1'-biphenyl

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.06(\mathrm{~d}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. Data is consistent with that reported in the literature. ${ }^{11}$

3,5-dimethyl-1,1'-biphenyl
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{12}$
$\underset{\sim}{\text { ® }}$

2-methoxy-1,1'-biphenyl
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53-7.52(\mathrm{t}, 2 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.31(\mathrm{~m}$, $3 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{13}$

3-methoxy-1,1'-biphenyl
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.58$ (d, 2H), 7.45-7.41 (m, 2H), 7.35-7.33 (m, 2 H), 7.19-7.17 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.13(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.88(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{9}$

$\stackrel{\oplus}{\infty}$
$\stackrel{\leftrightarrow}{\circ}$
8
i

3,4,5-trimethoxy-1,1'-biphenyl
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{14}$

べ

[1,1'-biphenyl]-2-amine
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}$, $2 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{9}$
$\stackrel{N}{1}$

$$
\stackrel{6}{\stackrel{0}{6}}
$$

$$
\begin{aligned}
& 8 \\
& 0 \\
& 1
\end{aligned}
$$

[1,1'-biphenyl]-4-amine
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.53(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.41(\mathrm{~m}, 4 \mathrm{H})$, $7.28-7.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.75(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H})$. Data is consistent with that reported in the literature. ${ }^{15}$
$\underset{\sim}{N}$

References

1. Q. Du, W. Zhang, H. Ma, J. Zheng, B. Zhou and Y. Li, Tetrahedron., 2012, 68, 3577.
2. P. Mao, L. Yang, Y. Xiao, J. Yuan, X. Liu and M. Song, J. Organomet. Chem., 2012, 705, 39.
3. N. Liu and Z. X. Wang, J. Org. Chem., 2011, 76, 10031.
4. M.-T. Chen, D. A. Vicic, M. L. Turner and O. Navarro, Organometallics, 2011, 30, 5052.
5. B. Mu, J. Li, Z. Han and Y. Wu, J. Organomet. Chem., 2012, 700, 117.
6. V. Farina, B. Krishnan, D. R. Marshall and G. P. Roth, J. Org. Chem., 1993, 58, 5434.
7. C. M. So, C. P. Lau and F. Y. Kwong, Org. Lett., 2007, 9, 2795.
8. P. Leowanawat, N. Zhang, A. M. Resmerita, B. M. Rosen and V. Percec, J. Org. Chem., 2011, 76, 9946.
9. E. Ullah, J. McNulty, M. Sliwinski and A. Robertson, Tetrahedron Lett., 2012, 53, 3990.
10. S. L. Mao, Y. Sun, G. A. Yu, C. Zhao, Z.J. Han, J. Yuan, X. L. Zhu, Q. H. Yang and S. H. Liu, Org. Biomol. Chem., 2012, 10, 9410.
11. Q. Dai, W. Z. Gao, D. Liu, L. M. Kapes and X. M. Zhang, J. Org. Chem., 2006, 71, 3928.
12. Y. X. Huang, M. E. Moret, J. M. Robertus and K. Gebbink, Eur. J. Org. Chem., 2014, 3788.
13. C. Liu, X. M. Li, Z. M. Gao, X. N. Wang and Z. L. Jin, Tetrahedron, 2015, 71, 3954.
14. C. M. Boehner, E. C. Frye, K. M. G. Connell, W. R. J. D. Galloway, H. F. Sore, P. G. Dominguez, D. Norton, D. G. Hulcoop, M. Owen, G. Turner, C. Crawford, H. Horsley and D. R. Spring, Chem. Eur. J., 2011, 17, 13230.
15. M, Charbonneau, G, Addoumieh, P, Oguadinma and A. R. Schmitzer, Organometallics, 2014, 33, 6544.
