Electronic Supplementary Information

Ethylenediamine-functionalized Magnetic Fe₃O₄@SiO₂ Nanoparticles: cooperative trifunctional catalysis for selective synthesis of nitroalkenes

Fengjun Xue,^{ab} Yahao Dong,^{ab} Peibo Hu,^{ab} Yanan Deng^{ab} and Yuping Wei*^{ab}

^aDepartment of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R.China

^bCollaborative Innovation Center of Chemical Science and Engineering

(Tianjin), Tianjin 300072, P.R.China

*Corresponding Author. Tel and Fax: +86 22 27403475; E-mail: ypwei@tju.edu.cn

Table of contents

Table	Page
List of Products	S2-S3
References	S4
Copies of ¹ H NMR Spectra of all compounds	S5-S9

List of Products

1. ¹H NMR spectra data of the products.

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 7.98 (d, *J* = 13.6 Hz, 1H), 7.53 (dd, *J* = 11.1, 6.6 Hz, 3H), 6.98 (d, *J* = 8.7 Hz, 2H), 3.89 (s, 3H).¹

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.01 (d, *J* = 13.6 Hz, 1H), 7.60 (d, *J* = 13.6 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 2.44 (s, 3H).²

3b

3d

3e

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.01 (d, *J* = 13.6 Hz, 1H), 7.55 (d, *J* = 13.6 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 2H), 6.94 (d, *J* = 8.5 Hz, 2H), 4.84 - 4.70 (m, 1H).³

Yellow solid; ¹H NMR (400 MHz, CDCl₃) $\delta = 8.04$ (d, J = 13.7 Hz, 1H), 7.62 (d, J = 13.7 Hz, 1H), 7.60 – 7.45 (m, 5H).²

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.45 (s, 1H), 8.38 (d, *J* = 8.2 Hz, 1H), 8.08 (d, *J* = 13.7 Hz, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.75 – 7.66 (m, 2H).⁴

Light yellowish solid; ¹H NMR (400 MHz, CDCl₃) δ = 7.99 (d, *J* = 13.7 Hz, 1H), 7.60 (d, *J* = 13.7 Hz, 1H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.46 (d, *J* = 8.5 Hz, 2H).²

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.16 – 7.87 (m, 1H), 7.70 – 7.49 (m, 1H), 7.33 – 7.15 (m, 1H), 7.13 – 6.75 (m, 2H), 3.97 (s, 6H).⁴

Orange yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 7.96 (d, *J* = 13.5 Hz, 1H), 7.51 (d, *J* = 13.5 Hz, 1H), 7.12 (d, *J* = 7.7 Hz, 1H), 7.04 (s, 1H), 6.91 (d, *J* = 7.9 Hz, 1H), 6.10 (s, 2H).⁴

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 13.2 Hz, 1H), 7.64 – 7.51 (m, 2H), 6.92 (d, *J* = 3.4 Hz, 1H), 6.61 (dd, *J* = 3.3, 1.7 Hz, 1H).

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ = 8.85 (d, *J* = 13.4 Hz, 1H), 8.14 (t, *J* = 7.9 Hz, 1H), 8.02 (t, *J* = 6.6 Hz, 1H), 7.95 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 6.5 Hz, 1H), 7.70 – 7.59 (m, 3H), 7.54 (t, *J* = 7.7 Hz, 1H).⁴

3j

References

- Y. M. McNamara, S. M. Cloonan, A. J. S. Knox, J. J. Keating, S. G. Butler, G. H. Peters, M. J. Meegan and D. C. Williams, *Bioorg. Med. Chem.*, 2011, **19**, 1328-1348.
- M. Zhang, P. Hu, J. Zhou, G. Wu, S. J. Huang and W. P. Su, Org. Lett., 2013, 15, 1718-1721.
- K. Kiyokawa, T. Nagata, J. P. Hayakawa and S. Minakata, *Chem. Eur.* J., 2015, 21, 1280-1285.
- S. Manna, S. Jana, T. Saboo, A. Maji and D. Maiti, *Chem. Commun.*, 2013, 49, 5286-5288.

S5

Fig. S6 ¹H NMR spectra of 3f in $CDCl_3$

S8

