Supporting Information

Supramolecular Assembly of Dipeptide Functionalized Benzo[ghi]perylene Monoimide Directs White Light Emission via Donor-Acceptor Interactions

Manoj K. Manna,[†] Dnyaneshwar B. Rasale,[†] and Apurba K. Das*[†]

[†]Department of Chemistry, Indian Institute of Technology Indore, Indore 452017, India

*To whom correspondence should be made

Dr. Apurba K. Das Email: apurba.das@iiti.ac.in

1. Synthetic Scheme

Scheme S1. Synthesis of *N*-dipeptide functionalized benzo[*ghi*]perylene-1,2-dicarboxylic monoimide. (i) Boc-anhydride, 1,4 dioxane, Na₂CO₃; (ii) phenylalanine methyl ester, HOBt/DIPC, DMF; (iii) TFA; (iv) maleic anhydride, EtOAc; (v) ZnCl₂/HMDS, benzene, 80 °C; (vi) perylene, *p*-chloranil, 240 °C, 3h.

Figure S1. UV-Visible spectra of BPI-FF-OMe in different solvents listed from Table 1.

Figure S2: Normalized fluorescence spectra of BPI-FF-OMe in various nonpolar to polar solvents listed in Table 1.

Figure S3: Normalized fluorescence spectra of BPI-FF-OMe and BPI-L-OMe in methanol.

Figure S4. Fluorescence excitation spectra of donor BPI-FF-OMe in methanol (emission wavelength 564 nm).

Figure S5: Fluorescence spectra of BPI-FF-OMe with equimolar mixture of PyBA cover various emission wavelength for white light emission.

Figure S6. Optical images show solid state (thin film) blue, yellow and white emission when solution of PyBA, BPI-FF-OMe and mixture (10:1) of PyBA and BPI-FF-OMe coated over silica plate and subsequent illumination under UV lamp at 365 nm.

Figure S7. Optical images show blue, yellow and white emission of solution of PyBA, BPI-L-OMe and mixture (10:1) of PyBA and BPI-L-OMe upon illumination under UV lamp at 365 nm.

Figure S8. A) Fluorescence spectra of $(1 \times 10^{-6} \text{ mol } L^{-1})$ of PyBA, BPI-L-OMe and mixture of different equivalents of PyBA and BPI-L-OMe in methanol.

Figure S9. Optical images of BPI-FF-OMe in different solvents listed in Table 1 upon illumination under UV lamp at 365 nm.

	Molecular structure	Purpose	Reference
1	$\begin{array}{c} NH_2 \\ N + N \\ H_2 N + $	White light emission	<i>ACS Appl. Mater. Interfaces</i> 2013, 5 , 5478–5485
2	$\left\{ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ $	White light emission	<i>Adv.Mater.</i> 2009, 21 , 2059–2063.
3	BochN (H, H, H, H, H, C) - COOMe Mecocc, H, T, H, H, H, C) - COOMe	White light emission	<i>Chem. Commun.</i> , 2013, 49 , 6909-6911.
4	R = H, CH3	White light emission	<i>Chem. Eur. J.</i> 2012, 18 , 1290-1294.
5	$CI \xrightarrow{HO_2} O \xrightarrow{O} -NH_2$ $CI \xrightarrow{HO_2} O \xrightarrow{O} O \xrightarrow{CI} ($	White light emission	<i>Chem. Commun.</i> , 2010, 46 , 8002–8004.
6		White light emission	Adv. Mater. 2008, 20, 79-83

Table S1: Reports on the white light emitting materials.

7		White light emission	<i>Chem. Commun.</i> , 2014, 50 , 15878-15881
8		White light emission	J. Phys. Chem. C 2012, 116 , 21706-21716
9		White light emission	<i>Adv. Mater.</i> , 2005, 17 , 34-39
10		White light emission	<i>J. Am. Chem. Soc</i> .2009, 131 , 14043-14049.
11	O-H H H H H	White light emission	International Journal of Photoenergy, 2014
12	HOUTO	White light emission	<i>J. Am. Chem. Soc</i> .2006, 128 , 14081-14092,

13		White light emission	J. Mater. Chem., 2011, 21 , 12969-12976.
14		White light emission	J. Phys. Chem. C 2011, 115 , 17965-17972
15	O-H H	White light emission	J. Am. Chem. Soc. 2011, 133, 17738-17745
16		White light emission	<i>Adv. Mater.</i> 2007, 19 , 3672-3676
17	$ \begin{array}{c} 0 \\ N \\ (CH_2)_n \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $	White light emission	Angew. chem. 2014, 126 , 4660-4665.
18		White light emission	<i>Chem. Eur. J.</i> 2009, 15 , 9737-9746.

19	N N CIO4-	White light emission	J. Mater. Chem. C, 2015, 3 , 4563-4569.
20		White light emission	J. Phys. Chem. C 2009, 113 , 4641-4647
21	Vegetable extract	White light emission	<i>Scientific Reports</i> , 2015, 5 , 11118.
23	Bu ^t Bu ^t Bu ^t	White light emission	J. Am. Chem. Soc.2006, 128, 5592-5593
24	n = 2, 3, 6: BCz 1 , 2 , 3	White light emission	<i>Chem. Commun.</i> , 2013, 49 , 8178-8180.
25		White light emission	<i>Chem. Commun.</i> , 2015, 51 , 2130-2133

26	CN-CS-S-S-NO CN-CS-S-S-NO	White light emission	<i>Chem. Commun.</i> , 2013, 49 , 4899-4901
27	•	W/1.:4-1:-14:	ACS Appl. Maton Intenfaces
27		white light emission	2014, 6 , 22569–22576
	^{HN} ↓ → POP-PU		
28		White light emission	J. Am. Chem. Soc. 2009, 131 , 833-843.
29	DP	White light emission	J. Am. Chem. Soc.2010, 132, 1742–1743

30	H-O H-O	White light emission	<i>Phys. Chem. A</i> 2009, 113 , 5888–5895
31	$\begin{array}{c} KOOC \qquad \qquad \qquad COOK \\ KOOC \qquad \qquad COOK \\ \qquad ONa \\ O=S=O \\ \qquad \qquad O \\ O=S=O \\ \qquad \qquad O \\ O \\ O=S=O \\ \qquad \qquad O \\ O $	White light emission	<i>Adv. Mater.</i> 2013, 25 , 1713–1718
32	$\begin{array}{c} \overset{OEt}{\underset{OEt}{}} & \overset{O}{\underset{O}{}} & \overset{O}{\underset{O}{} & \overset{O}{\underset{O}{}} & \overset{O}{\underset{O}{}} & \overset{O}{\underset{O}{} & \overset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{} & \overset{O}{\underset{O}{} & \overset{O}{} & \overset{O}{} & \overset{O}{ & \overset{O}{} & O$	White light emission	J. Mater. Chem. C, 2013, 1, 4437–4444

	MeO F F OMe		
33		White light emission	
	n ^(OR)		Angew. Chem. Int. Ed. 2012, 51 , 3391–3395
34		White light emission	<i>Angew. Chem. Int. Ed.</i> 2011, 50 , 7032–7036
	$H_2N H_1 H_1 - H_2 - H_1 H_2 - H_1 H_2 -$		

Table S2. DLS characterization of BPI-FF-OH nanospheres in toluene and methanol

#	Solvent	d _h /nm ^a	PD1 ^b	ξ/mV ^c
1	Methanol	613	0.30	-17.97
2	Toluene	857	0.47	-25.89

 ad_h is the hydrodynamic diameter. ^bPDI is the polydispersity index. ^c ξ is the zeta potential.

The Lippert-Mataga Equation

Equation 3 is a simplified from equation 2.

$$\overline{\nu}_{abs} - \overline{\nu}_{em} = \frac{2}{hc} \left(\frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1} \right) \frac{(\mu_e - \mu_g)^2}{\rho^3} + C$$
(2)

$$\Delta \bar{\nu} = \frac{2\Delta f}{4\pi \varepsilon_0 h c \rho^3} (\mu_e - \mu_g)^2 + C$$
(3)

$$\begin{split} \Delta \overline{\nu} &= \overline{\nu}_{abs} - \overline{\nu}_{em} \text{ is the solvatochromic shift or Stokes shift (in cm^{-1}) between the absorbance and} \\ \text{emission} & \text{maxima} & [\overline{\nu}_{abs} = 1/\lambda_{abs}(max), \overline{\nu}_{em} = 1/\lambda_{em}(max)]. \\ \Delta f &= [\left(\varepsilon - 1/2\varepsilon + 1\right) - (n^2 - 1/2n^2 + 1)] \text{ is solvent polarizability parameter, which is described} \\ \text{by solvent's dielectric constants}(\varepsilon) \text{ and refractive indices}(n). \ \rho \text{ represents radius of solvated} \\ \text{cavity of dipole. } \mu_e \text{ and } \mu_g \text{ are the dipole moments of a dye both in excited and ground states} \\ \text{respectively. The Lippert - Mataga expression of Stokes shift strongly depends on the change of} \\ \text{denotes dielectric constant of vacuum. } h \text{ and } c \text{ are Plank's constant and velocity of light} \\ \text{respectively. C is a constant.} \end{split}$$

Figure S10: ¹H NMR spectrum (400 MHz, DMSO-d₆) for *N*-maleyl-L-Phe(1)-L-Phe(2)-OMe 5.

Figure S11: ¹H NMR spectrum (400 MHz, CDCl₃) for *N*-maleoyl-L-Phe(1)-L-Phe(2)-OMe 6.

Figure S12: ¹H NMR spectrum (400 MHz, CDCl₃) for benzo[ghi]perylene-1,2-dicarboxylic(L-Phe-L-Phe-OMe)imide **1**.

Figure S13: ¹H NMR spectrum (400 MHz, DMSO-d₆) for maleyl-Leu-OMe .

.

Figure S14: ¹H NMR spectrum (400 MHz, CDCl₃) for maleoyl-L-Leu-OMe.

Figure S15: ¹H NMR spectrum (400 MHz, CDCl₃) for benzo[ghi]perylene-1,2-dicarboxylic(L-Leu-OMe)imide.

Figure S17: Mass spectra of *N*-maleyl-L-Phe(1)-L-Phe(2)-OMe **5**. The peak $m/z (M + Na)^+ = 447.1577$ corresponds to the synthesis of *N*-maleyl-L-Phe(1)-L-Phe(2)-OMe.

Figure S18: Mass spectra of *N*-maleoyl-L-Phe(1)-L-Phe(2)-OMe **6**. The peak $m/z (M + Na)^+ = 429.1470$ corresponds to the synthesis of *N*-maleoyl-L-Phe(1)-L-Phe(2)-OMe.

Figure S19: Mass spectra of benzo[ghi]perylene-1,2-dicarboxylic(L-Phe-L-Phe-OMe)imide 1. The peak m/z $(M + Na)^+ = 677.2096$ corresponds to the synthesis of benzo[ghi]perylene-1,2-dicarboxylic(L-Phe-L-Phe-OMe)imide.