Supplementary information for: Solventless Metallation of Low Melting Porphyrins Synthesised by the Water/Microwave Method

César A. Henriques, Sara M. A. Pinto, M. Pineiro, João Canotilho, M. Ermelinda S. Eusébio, Mariette M. Pereira and Mário J. F. Calvete

1. Experimental Section

<u>General procedure Water/MW method</u>: The mixture of pyrrole (9.8 mmol; 0.68 mL), aldehyde (or mixture of aldehydes) (9.8 mmol) and water (0.2 mL) were mixed in a 10 mL microwave vessel. If the aldehyde was a solid, ultrasound was applied to the closed vessel for 10 minutes. The mixture was subsequently subjected to microwave irradiation for 10 minutes at 200 °C and 300W initial power. After cooling, methyl acetate (~10 mL) was added and the resulting mixture was then washed with water (10 mL). The porphyrin isolated yields obtained either after column chromatography on silica gel using different mixtures of methyl acetate/n-hexane as eluent or recrystallisation.

1.1. 5-(4-hydroxyphenyl)-10,15,20-tris-(4-(2-ethyl-hexyloxy)phenyl)porphyrin (2) <u>Via MW-Water method¹</u>

Were used 0.299 g (2.45 mmol) of 4-hydroxybenzaldehyde and 1.72 g (7.35 mmol) of 4-(2-ethyl-hexyloxy)benzaldehyde). As eluent was used methyl acetate/n-hexane (1:3), to elute 5,10,15,20-(4-(2-ethyl-hexyloxy)phenyl porphyrin**3**, followed by methyl acetate to obtain 5-(4-hydroxyphenyl)-10,15,20-(4-(2-ethyl-hexyloxy)phenyl porphyrin**2**in 7% yield (192 mg). Data according to the literature.¹

Via Adler-Longo method²

The condensation of the mixture of 4-hydroxybenzaldehyde (1.83 g, 0.015 mol), 4-(2ethyl-hexyloxy)phenyl (10 mL, 0.045 mol) with 4.1 mL pyrrole (0.059 mol), in propionic acid (315 mL) was carried out of at 150°C (2h). The reaction was cooled till ~65°C and the reflux condenser was substituted by a distillation apparatus, for low pressure solvent removal. The solid product obtained was dissolved in dichloromethane (100 mL) and washed with saturated solution of sodium bicarbonate (3x 100 mL). The crude reaction mixture was purified by column chromatography with CH_2Cl_2 :n-hexane (2:1) initially, to elute porphyrin **3**, followed by CH_2Cl_2 as eluent. The porphyrin **2** was obtained with 8% (1.16 g) of yield.

Via Gonsalves-Pereira method³

The condensation of the mixture of 4-hydroxybenzaldehyde (1.83 g, 0.015 mol), 4-(2ethyl-hexyloxy)benzaldehyde (10 mL, 0.045 mol) with 4.1 mL pyrrole (0.059 mol), in a mixture of acetic acid (210 mL) and nitrobenzene (105mL) was carried out of at 140 °C (1h). The reaction was cooled till ~65°C and the reflux condenser was substituted by a distillation apparatus, for low pressure solvent removal. Then, the crude reaction mixture was purified by column chromatography with CH_2Cl_2 :n-hexane (2:1) initially, to elute porphyrin **3** followed CH_2Cl_2 as eluent. The porphyrin **2** was obtained with 8% (1.37 g) of yield.

Via Lindsey method⁴

Samples of 4-hydroxybenzaldehyde (0.455 g, 3.75 mmol), 4-(2-ethyl-hexyloxy)phenyl (2.58 mL, 11 mmol) and pyrrole (1.04 mL, 15 mmol) were dissolved in CH₂Cl₂ (1L) at room temperature under inert atmosphere. Then, TFA (1 mL, 11 mmol) was added, and the mixture was stirred. After 1h, a solution of DDQ (2.5 g, 11 mmol) was added and reaction heated to 45 °C for 1 hour. In finally, the reaction mixture was neutralized with 20 mL triethylamine and the solvents were evaporated. The crude reaction mixture was dissolved in CH₂Cl₂ (150 mL) and washed with 1 M NaOH solution (5 x 200 mL) to remove DDQ rests, dried with Na₂SO₄, evaporated and purified by column chromatography with CH₂Cl₂:n-hexane (2:1) initially, to elute porphyrin **3**, followed CH₂Cl₂ as eluent. The porphyrin **2** was obtained with 10% (400 mg) of yield.

1.1.1. Up-scaled synthesis of porphyrin 2, via MW-Water method

Were used 1.2 g (9.8 mmol) of 4-hydroxybenzaldehyde and 6.9 g (29.4 mmol) of 4-(2-ethyl-hexyloxy)benzaldehyde) and 2.62 mL (39 mmol) of pyrrole dissolved in 1 mL deionized water, using a 35 mL MW vessel. Reaction and work-up proceeded as for general procedure. As eluent was used methyl acetate/n-hexane (1:3), to elute 5,10,15,20-(4-(2-ethyl-hexyloxy)phenyl porphyrin **3**, followed by methyl acetate to obtain 5-(4-hydroxyphenyl)-10,15,20-(4-(2-ethyl-hexyloxy)phenyl porphyrin **2** in 6.8% yield (765 mg).

1.2. Meso-substituted symmetrical porphyrins (using <u>MW/Water method)</u>

5,10,15,20-(4-(2-ethyl-hexyloxy)phenyl porphyrin (3)

4-(2-ethyl-hexyloxy)benzaldehyde) was used (2.30 g, 9.8 mmol). Methyl acetate/n-hexane (1:3) was used as eluent for column chromatography. 5,10,15,20-(4-(2-ethyl-hexyloxy)phenyl porphyrin was obtained in 14% yield (389 mg). Data is according to the literature.¹

5,10,15,20-tetra(dodecyl)porphyrin (4)

n-Tridecanal (1.94g, 9.8 mmol) was used in this reaction. As eluent was used methyl acetate/n-hexane (1:3) and 4 was obtained in 11% yield (268 mg).

¹H NMR (400 MHz, CDCl₃, 25°C, TMS): δ = 9.45 (s,8H), 4.92 (t, J=8Hz, 8H), 2.57-2.47 (m, 8H), 1.86-1.77 (m,8H), 1.57-1.51 (m,8H), 1.31-1.21(m, 56H), 0.89 (t, J=8Hz, 12H), -2.63 (s, 2H). Data is according to the literature.⁵

5,10,15,20-tetra(tridecyl)porphyrin (5)

n-Tetradecanal (2.08g, 9.8 mmol) was used in this reaction. As eluent was used methyl acetate/n-hexane (1:3) and **5** was obtained in 12% yield (292 mg).

¹H NMR (400 MHz, CDCl₃, 25°C, TMS): $\delta = 9.44$ (s,8H), 4.91 (t, J=8Hz, 8H), 2.55-2.45 (m, 8H), 1.83-1.76 (m,8H), 1.69-1.63 (m,8H, 1.40-1.21 (m, 64H), 0.87 (t, J=8Hz, 12H), -2.65 (s, 2H). Data is according to the literature.⁶

1.3. Characterization of metalloporphyrins

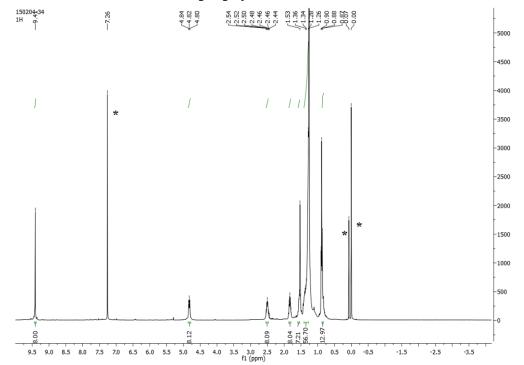
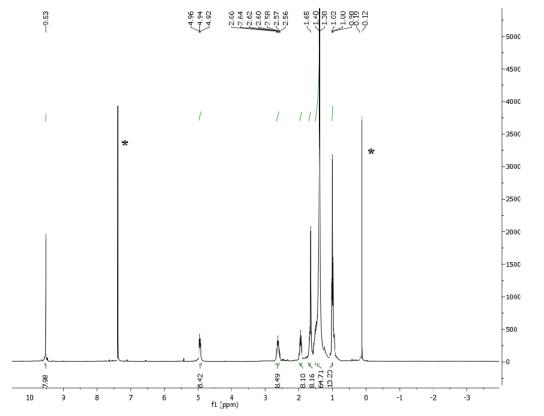
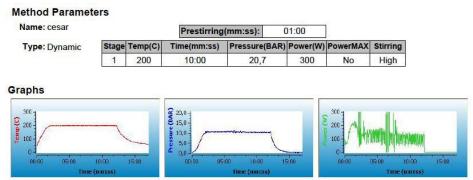




Fig. SI1. 1H-NMR spectrum of 5,10,15,20-tetra(dodecyl)porphyrinato zinc(II) (4a). (*-solvents)

Fig. SI2. 1H-NMR spectrum of 5,10,15,20-tetra(tridecyl)porphyrinato zinc(II) (5^a). (*-solvents)

2. Typical Microwave apparatus reaction report (Temperature, pressure and power *vs* time)

3. Calculation of sustainability factors (E Factor and EcoScale)

Density of chemicals used for the calculation of residues (d = density)Propionic acid d= 990 g/L Methanol d=792 g/L Nitrobenzene d= 1200 g/LAcetic acid d=1050 g/LDichloromethane d = 1330 g/LChloroform d= 1489 g/L n-Hexane d = 655 g/LWater d = 1000 g/LEthanol d= 789 g/L Ethyl acetate d=897 g/LTriethylamine d= 725.5 g/L Pyridine d = 982 g/LDiethyl ether = 713.4 g/LSaturated sodium acetate solution d= 1528 g/L Saturated sodium bicarbonate solution d=2200 g/LDBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) d=1018 g/LButyl acetate d = 883 g/LPetrol ether d = 640 g/L[bmim][BF₄] d=1210 g/L DMF d= 948 g/L Acetonitrile d = 786 g/L1-bromo-2-ethylhexane d = 1086 g/L

3.1. Calculation of E Factors for the preparation of 4-(2-ethyl-hexyloxy) benzaldehyde

<u>Conventional heating method</u> E = (118 g acetonitrile + 7.8 g acetonitrile + 30 g silica + 400 g dichloromethane)/9 gE = 62 Microwave irradiation method

E = (0.78 g acetonitrile + 1.56 g acetonitrile)/0.109 gE = 21

Delizaluellyue			
Conventional Method		Microwave Met	hod
Cotogory	Penalty	Catagory	Penalty
Category	Points	Category	Points
Yield	2.5	Yield	1.7
Price of reaction	3	Price of reaction	3
components	5	components	5
Safety	10	Safety	10
Technical Setup	0	Technical Setup	1
Temperature/Time	3	Temperature/Time	2
Workup/Purification	10	Workup/Purification	0
Total	28.5	Total	16.7
EcoScale (100-Total)	71.5	EcoScale (100-Total)	83.3

3.2. Calculation of E Factors for the preparation of 4-(2-ethyl-hexyloxy) benzaldehyde

3.3. Calculation of E Factors for the preparation of 5-(4-hydroxyphenyl)-10,15,20-tri-(4-(2-ethyl-hexyloxy)phenyl)porphyrin 2

Water/Microwave method

E = (0.2 g water + 10 g methyl acetate + 10 g water + 30 g silica gel + 35 g n-hexane + 60 g methyl acetate + 60 g methyl acetate)/0.192 gE = 1069

Adler-Longo method

E = (312 g propionic acid + 133 g dichloromethane + 300 g bicarbonate + 300 g silica + 800 g dichloromethane + 200 g n-hexane + 500 g dichloromethane)/1.16 gE = 2193

Gonsalves-Pereira method

E = (250 g nitrobenzene + 110 g acetic acid + 850 g dichloromethane + 300 g silica + 220 g n-hexane + 550 g dichloromethane)/1.37 gE = 1664

Lindsey method

E = (1330 g dichloromethane + 1.4 g TFA + 2.5 g DDQ + 15 g triethylamine + 1000 gNaOH solution, 3 g Na2SO4 + 150 g silica + 532 g dichloromethane + 82 g n-hexane + 465 g dichloromethane)/ 0.4 g E = 8950

3.4. Calculation of EcoScale values for the preparation of 5-(4-hydroxyphenyl)-10,15,20-tris-(4-(2-ethyl-hexyloxy)phenyl)porphyrin 2

0,15,20-ths-(4-(2-ethyl-nexyloxy)ph		
MW-Water Method		
Catagoriu	Penalty	
Category	Points	
Yield	46.5	
Price of reaction	3	
components	5	
Safety	25	
Technical Setup	1	
Temperature/Time	3	
Workup/Purification	12	
Total	80.5	
EcoScale (100-Total)	9.5	

Gonsalves-Pereira Method		
Catagory	Penalty	
Category	Points	
Yield	46	
Price of reaction	8	
components	0	
Safety	30	
Technical Setup	1	
Temperature/Time	3	
Workup/Purification	15	
Total	104	
EcoScale (100-Total)	-4	

Adler-Longo Method		
Catagory	Penalty	
Category	Points	
Yield	46	
Price of reaction	8	
components	0	
Safety	30	
Technical Setup	1	
Temperature/Time	3	
Workup/Purification	13	
Total	101	
EcoScale (100-Total)	-1	

Lindsey Method		
Catagory	Penalty	
Category	Points	
Yield	44.5	
Price of reaction	18	
components	10	
Safety	50	
Technical Setup	1	
Temperature/Time	3	
Workup/Purification	13	
Total	129.5	
EcoScale (100-Total)	-29.5	

3.5. EHS classification Table

		Safety			Health	Environment				
Selected	Vol.	Release	Fire/	React./	Acute	Irrit.	Chronic	Persistency	Air	Water
substance	(m^{3})	pot.	explosion	Decomp.	toxic.		toxic.		haz.	haz.
Acetic acid	1	0.46	0.93	0.00	0.72	1.00	0.52	0.23	0.52	0.13
Dichloromethane	1	0.95	1.00	0.00	0.34	0.00	0.40	0.77	0.40	0.50
Nitrobenzene	1	0.10	0.69	0.00	0.49	0.39	0.66	0.54	0.66	0.35
Propionic acid	1	0.33	0.86	0.00	0.63	0.88	0.50	0.28	0.50	0.00

4. Calculation of sustainability factors for the preparation of metalloporphyrins **4.1.** Calculation of E Factors

Solventless method (this work)

E = (0.9 g methyl acetate + 2 g water)/0.0103 gE = 281 Chloroform/methanol method

 $E = (45 \text{ g chloroform} + 4 \text{ g methanol} + 5 \text{ g } Na_2SO_4 + 50 \text{ g water} + 20 \text{ g silica gel} + 150 \text{ g chloroform})/0.135 \text{ g}$ E = 2030

 $\frac{DMF \text{ method}}{E = (1500 \text{ g DMF} + 4000 \text{ g water})/11.4 \text{ g}}$ E = 482

Pyridine method

E = (98.2 g pyridine + 713 g diethyl ether + 2292 sodium acetate solution + 2854 gdiethyl ether + 2000 g 0.1M HCl + 2200 g NaHCO₃ + 1000 g water)/0.85 g E = 13126

DBU/Microwave method

 $E = (5 g DBU + 8 g ethanol + 9 g butyl acetate + 6 g petrol ether + 10 g methanol + 30 g Al_2O_3 + 200 g chloroform)/0.6 g E = 447$

Ionic liquid/Microwave method

E = (1.21 g ionic liquid + 15 g ethyl acetate + 10 g silica gel + 75 gdichloromethane)/0.006 g E = 16868

DMF/Microwave method

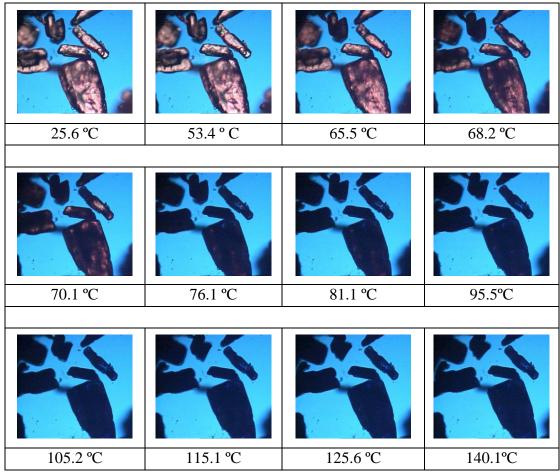
E = (5 g DMF + 50 g water + 50 g water)/0.105 gE = 1000

Solventless method (this work)		
Cotogory	Penalty	
Category	Points	
Yield	1	
Price of reaction	3	
components	5	
Safety	10	
Technical Setup	1	
Temperature/Time	2	
Workup/Purification	1	
Total	18	
EcoScale (100-Total)	82	

4.2. Calculation of EcoScale values	5
-------------------------------------	---

Chloroform/methanol method		
Catagory	Penalty	
Category	Points	
Yield	3	
Price of reaction	3	
components	5	
Safety	20	
Technical Setup	0	
Temperature/Time	3	
Workup/Purification	14	
Total	43	
EcoScale (100-Total)	57	

DMF method		
Cotogory	Penalty	
Category	Points	
Yield	3	
Price of reaction	5	
components	5	
Safety	20	
Technical Setup	0	
Temperature/Time	2	
Workup/Purification	14	
Total	44	
EcoScale (100-Total)	56	


Pyridine method		
Category	Penalty	
Category	Points	
Yield	2	
Price of reaction	5	
components	5	
Safety	25	
Technical Setup	0	
Temperature/Time	8	
Workup/Purification	1	
Total	41	
EcoScale (100-Total)	59	

DBU/Microwave method		
Cotogory	Penalty	
Category	Points	
Yield	17.5	
Price of reaction	5	
components	5	
Safety	15	
Technical Setup	1	
Temperature/Time	2	
Workup/Purification	11	
Total	51.5	
EcoScale (100-Total)	48.5	

Ionic liquid/Microwave method	
Category	Penalty
	Points
Yield	2
Price of reaction	5
components	
Safety	10
Technical Setup	1
Temperature/Time	2
Workup/Purification	13
Total	33
EcoScale (100-Total)	67

DMF/Microwave method	
Category	Penalty
	Points
Yield	2.5
Price of reaction	5
components	
Safety	15
Technical Setup	1
Temperature/Time	2
Workup/Purification	13
Total	38.5
EcoScale (100-Total)	61.5

5. Thermomicroscopy

Fig. SI3- Polarized light thermomicroscopy images obtained in a heating run cobalt (II) acetate tetrahydrate (5 equivalent) mixture. Magnification 200x; $\beta = 10^{\circ}$ C min⁻¹.

¹ C. A. Henriques, S. M. A. Pinto, G. L. B. Aquino, M. Pineiro, Mário J. F. Calvete and M. M. Pereira, *ChemSusChem*, 2014, **7**, 2821.

² A. D. Adler, F. R. Longo and W. Shergalis, J. Am. Chem. Soc., 1964, 86, 3145.

³ R. A. W. Johnstone, M. L. P. G. Nunes, M. M. Pereira, A. M. D. R. Gonsalves and A. C. Serra, *Heterocycles*, 1996, **43**, 1423.

⁴ J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, J. Org. Chem. 1987, 52, 827.

⁵ N. Katsonis, J. Vicario, T. Kudernac, J. Visser, M. M. Pollard and B. L. Feringa, J. Am. Chem. Soc., 2006, **128**, 15537.

⁶ C. A. Henriques, N. P.F. Gonçalves, A. R. Abreu, M. J. F. Calvete and M. M. Pereira, *J. Porphyrins Phthalocyanines*, 2012, **16**, 290.