Supporting Information

Conformational behaviour of 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one: a sudden story of three desmotrops

Vanya B. Kurteva,*^a Boris L. Shivachev,^b Rositsa P. Nikolova,^b Svetlana D. Simova,^a Liudmil M. Antonov,^a Lubomir A. Lubenov,^a and Maria A. Petrova^c

^aInstitute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria; ^bInstitute of Mineralogy and Crystallography "Acad. Ivan Kostov", Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 107, 1113 Sofia, Bulgaria; ^cUniversity of Chemical Technology and Metallurgy, Department of General and Inorganic Chemistry, 8 Kliment Ohridski blvd., 1756 Sofia, Bulgaria

Figure S1. Images (optical microscopy) of the five types of crystal phases 1-5; 2 (thick pale yellow needles) and 3 (yellow needles) were grown as a mixture; observed yellowish coloration on 4 and 5 is due to the employed light source.

Figure S2. Powder XRD patterns of 1-5. Crystal phases 2 and 3 grow as a mixture.

Bond	Selected bond lengths, Å							
	1	2	3	4	5			
N1 – N2	1.3981(19)	1.395(3)	1.420(6)	1.3768(19)	1.374(2)			
N2 – C3	1.313(2)	1.310(3)	1.294(6)	1.321(2)	1.326(2)			
C3 – C4	1.499(2)	1.427(3)	1.425(7)	1.387(2)	1.393(2)			
C4 – C41	1.434(2)	1.431(3)	1.424(7)	1.476(3)	1.469(3)			
C4 – C5	1.410(2)	1.389(3)	1.391(8)	1.431(3)	1.428(3)			
C5 – N1	1.346(2)	1.345(3)	1.318(7)	1.390(2)	1.385(2)			
C5 – O5	1.303(2)	1.311(3)	1.301(6)	1.2502(19)	1.254(2)			
C41 – O41	1.272(2)	1.268(3)	1.289(7)	1.219(2)	1.226(2)			

Table S1. Selected bond distances for 1 - 5 (Å).

Figure S3. Difference Fourier map (Fo - Fc) and observed residual electron density (Q1) nearby O41 and O5 in **3**.

	D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
1	C16-H16	0.930 2.255 124.42 2.885 O5
	O5-H5	0.820 1.849 141.67 2.543 O41
	D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
2	C16-H16	0.930 2.252 124.03 2.877 O5
	O5-H5	0.820 1.874 140.49 2.560 O41
	D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
	C16-H16	0.930 2.465 113.36 2.959 O5
3	O5-H5	0.820 1.79 141.5 2.482 O41
	O41-H41	0.820 1.70 157.5 2.482 O5
	D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
4	C12-H12	0.930 2.584 142.97 3.374 O5 [x, -y+1/2, z-1/2]
	C16-H16	0.930 2.425 116.19 2.956 O5
	N2-H2	0.860 1.873 159.65 2.696 O5 [x, -y+1/2, z-1/2]
5	D-H	d(D-H) d(HA) <dha a<="" d(da)="" th=""></dha>
3	N2-H2	0.945 1.719 170.94 2.656 O5 [x, -y, z-1/2]

Table S2. Hydrogen bonding interactions and geometry in 1-5 (Å, °).

Figure S4. Intramolecular hydrogen bonding interactions (top) and crystal packing (bottom) of the molecules in **1**.

Figure S5. Intramolecular hydrogen bonding interactions (top) and crystal packing (bottom) of the molecules in **2**.

Figure S6. Intramolecular hydrogen bonding interactions (top) and crystal packing (bottom) of the molecules in **3**.

Figure S7. Crystal packing of the molecules in 4.

Figure S8. Intramolecular hydrogen bonding interactions (left) and crystal packing (right) of the molecules in **5**.

	35.6°C	LT	29.4321(19)	8.8489(4)	11.4832(6)	97.478(5)	2965.3(3)	1.31
	135.4-1	RT	29.4373(11)	9.0493(4)	11.4932(4)	97.476(4)	3035.6(2)	1.279
	26.4°C	LT	10.9709(4)	11.8263(3)	11.9472(4)	110.334(4)	1453.49(9)	1.336
7	126.2-1	RT	10.966(5)	12.084(5)	11.968(5)	110.14(4)	1488.9(12)	1.304
	05.9°C	LT	7.4723(5)	17.3131(8)	11.3273(5)	60	1465.4(1)	1.325
	105.8-10	RT	7.6533(5)	17.3165(8)	11.3945(5)	60	1510.09(14)	1.286
	04.0°C	LT	11.7774(7)	5.3159(16)	23.349(3)	97.592(7)	1449.0(5)	1.34
5	103.9-1	RT	11.8744(7)	5.3140(5)	23.4934(14)	97.072(5)	1471.2(1)	1.320
	101.2°C	LT	15.3484(4)	5.12120(10)	18.0639(5)	90.970(2)	1419.66(6)	1.368
	101.1-]	RT	15.3847(5)	5.2035(2)	18.2280(7)	90.913(3)	1459.04(9)	1.331
sample	LL		а	q	c	beta	Λ	р

Table S3. Comparison of room temperature and low temperature crystal data for 1-5.

	CDCl ₃	1	2 ^a	3 ^b	4	5
CH ₃ -3	16.02	16.27	15.86	18.16	11.11	12.45
CH ₃ , Ar	21.68	22.72	22.09	21.09	21.74	21.01
	120.73	117.79 ^c	118.02 ^c	120.79 ^c	116.83	122.30
	126.62	125.61	125.92	125.01	119.98	124.55
CU Ar Dh	128.17	128.12	128.46	128.96 ^c	125.54	126.11
CII-AI, FII	129.08	129.54 ^c	129.90	131.04	127.37	129.24 ^c
	129.13	130.54	130.09		130.00 ^c	130.67
		131.53			131.76	132.76
C_q -3	147.91	145.22	145.52	146.46	151.09	146.84
C _q -4	103.53	102.88	103.33	101.57	105.02	103.16
C _q -5	161.81	163.13	162.35	163.28	158.86	160.12
C _q -O, aroyl	191.63	188.70	190.86	189.91	187.12	190.22
C_q -1, Ar	134.64	134.36	135.03	131.20	135.64 ^c	135.62 ^c
C _q -1, Ph	137.27	138.27	137.92	137.34		
C _q -4, Ar	142.69	141.59	141.89	143.79	144.04	143.49
N-1		191.74	191.60	191.33	174.25	176.72
N-2		277.62	279.55	284.72	162.66	167.41

Table S4. Chemical shifts in the NMR spectra of 3-methyl-4-(4-methylphenyl)-1-phenyl-pyrazol-5-one signals in solid state.

^aAssigned as difference between the spectra of **1**+**2** mixture and pure **1**. ^bMixture containing >90 % **3** according to powder XRD. ^c Signals with increased intensity (more than one carbon).

Figure S9¹³C spectra of **4** (brown) and **5** (green): a) CPTOSS-NQS; b) CPTOSS. Residual spinning sideband is marked with asterisk.

Figure S10 ¹³C CPTOSS spectra of 1 + 2 mixture (brown) and: a) 1 (green); b) 3 (green). Residual spinning sidebands are marked with asterisks.

Figure S11. The aromatic area in ¹H NMR spectra of 3-methyl-4-(4-methylphenyl)-1-phenyl-pyrazol-5-one in different solvents. From bottom to top: CDCl₃, CD₃COCD₃, CD₃OD:CD₃COCD₃ 5:1, CD₃OD.

Figure S12. ¹³C NMR spectra of 3-methyl-4-(4-methylphenyl)-1-phenyl-pyrazol-5-one in different solvents. From bottom to top: CDCl₃, CD₃COCD₃, CD₃OD:CD₃COCD₃ 5:1, CD₃OD.

	CDCl ₃		CD ₃ COCD ₃		CD ₃ OD: CD ₃ COCD ₃ 5:1		CD ₃ OD	
	$\delta_{\rm H}$	δ _C	δ_{H}	δ _C	δ_{H}	δ _C	$\delta_{\rm H}$	δ _C
CH ₃ -3	2.146	16.02	2.107	16.09	2.201	15.10	2.234	14.63
CH ₃ , Ar	2.457	21.68	2.451	21.58	2.431	21.63	2.426	21.62
CH-2,6, Ar	7.568	128.17	7.661	129.24	7.652	129.80	7.652	130.26
CH-3,5, Ar	7.320	129.08	7.405	129.89	7.340	129.93	7.314	129.97
CH-2,6, Ph	7.880	120.73	7.932	121.12	7.771	122.62	7.700	123.18
CH-3,5, Ph	7.473	129.13	7.519	129.94	7.500	130.16	7.492	129.97
CH-4, Ph	7.306	126.62	7.334	127.19	7.349	127.94	7.351	128.25
C _q -3		147.91		148.69		150.72		151.27
C _q -4		103.53		104.36		105.28		105.59
C _q -5		161.81		162.61		160.68		160.78
C=O		191.63		191.26		192.38		192.88
C_q -1, Ar		134.64		135.47		136.47		137.18
C_q -4, Ar		142.69		143.58		144.00		144.22
C_{a} -1, Ph		137.27		138.58		138.05		137.86

Table S5. Chemical shifts in the NMR spectra of 3-methyl-4-(4-methylphenyl)-1-phenyl-pyrazol-5-one signals in different solvents.

Figure S13. Partial ¹H-¹H NOESY spectra of 3-methyl-4-(4-methylphenyl)-1-phenyl-pyrazol-5-one in: a) CDCl₃; b) CD₃COCD₃; c) CD₃OD:CD₃COCD₃ 5:1; d) CD₃OD.

Table S6. Relative stability and major structural parameters of tautomers and isomers (M06-2X/TZVP) in methanol (PCM model).

Structure	ΔΕ	$\Delta E + ZPE$	ΔG	angle	angle	angle
	[kcal/mol]	[kcal/mol]	[kcal/mol]	C4-C41-	C3-C4-	C16-C11-
				C42-C47	C41-O41	N1-C5
A1	0.00	0.00	0.00	-43.1	164.8	-34.9
A2	0.22	0.16	0.03	44.1	-167.1	-34.7
B1	1.50	1.16	1.06	-45.4	169.6	-26.2
B2	1.50	1.16	1.06	45.4	-169.6	26.1
A3	3.62	3.36	3.20	41.9	17.6	-40.3
A4	3.75	3.40	3.00	-42.9	-18.2	-40.6
D1	4.20	3.78	2.87	30.3	23.8	-50.1
D2	4.73	4.16	3.49	-32.6	-22.6	-48.6
D3	5.25	4.85	4.26	32.3	-143.7	-46.7
D4	6.02	5.53	5.93	-34.5	142.4	-49.7
C1	7.06	6.17	6.23	-5.1	17.4	29.5
C2	7.80	6.89	5.78	-3.3	-115.1	-32.7
C3	7.82	7.10	6.08	-0.3	86.3	27.2
B4	9.72	9.41	9.05	40.2	10.2	28.6
B3	9.72	9.41	9.05	-40.2	-10.2	-28.6