Effect of UV light-induced nitrogen doping on the field effect transistor characteristics of graphene

Gaku Imamura^{a,b*} and Koichiro Saiki^b

^aWorld Premier International (WPI) Research Center, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^bDepartment of Complexity Science & Engineering, Graduate School of Frontier Sciences,

The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan

*Corresponding author; Tel: +81-29-851-3354 (ext. 4186). Fax: +81-29-860-4706. E-mail: IMAMURA.Gaku@nims.go.jp

According to the phenomenological model proposed by Lucchese *et al.*¹, there are two regions inside and outside a single defect: a structurally disordered region (S-region), and a Raman-active region (A-region) as shown in Fig. S1a. In the S-region, the honeycomb network is totally broken, which does not contribute to the D band. The A-region lies around the S-region. The selection rules for the A_{1g} vibrational mode is broken by defects in the A-region, leading to the evolution of the D band. As the intensity of the D band is proportional to the area of the A-regions, the I_D/I_G can be written as

$$I_{\rm D}/I_{\rm G} = C(\pi r_{\rm a}^2 - \pi r_{\rm s}^2) = \pi r_{\rm a}'(2r_{\rm s} + r_{\rm a}'),$$

where *C* is a proportional constant, and r_a , r_s , r_a ' are the length scales shown in Fig. S1a. In the case of ion-bombardment, r_s and r_a ' are ~1 nm and ~2 nm, respectively¹. In contrast to the defects caused by ion-bombardment, r_s is even smaller for an sp³ carbon atom as a bonding structurally breaks only one carbon atom².(Fig. S1b) Assuming that r_a ' is constant regardless of the type of defects, the area of the A-regions for sp³ carbon atoms is estimated to be smaller compared to the defects caused by ion-bombardment.(Fig. S1c) Considering that defects caused by UV-irradiation in NH₃ are sp³-like bonds and amino groups, it is reasonable that the defect density judged from I_D/I_G is vastly underestimated.

Figure S1. (a) Model for a single defect. Definition of S-region, A-region, r_s , r_a and r_a '. (b) Comparison of the defects caused by ion-bombardment and UV-irradiation. (c) Comparison of the defects distributed with the same defect density.

REFERENCES

- M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, *Carbon*, 2010, 48, 1592–1597.
- S. Niyogi, E. Bekyarova, M.E. Itkis, H. Zhang, K. Shepperd, J. Hicks, M. Sprinkle, C. Berger, C.N. Lau, W.A. deHeer, E.H. Conrad, R.C. Haddon, *Nano Lett.*, 2010, 10, 4061–4066.