Electronic Supplementary Information

for

 H_2S bubbles-assisted synthesis of hollow $Cu_{2-x}Se_yS_{1-y}$ /reduced graphene oxide nanocomposites with tunable compositions and localized surface plasmon resonance

Wen Long Li,‡^{*a*} Hong Yan Zou,‡^{*b*} Jing Lan,^{*b*} Qiang Wang,^{*b*} Yuan Fang

Li^a and Cheng Zhi Huang*^{ab}

^{*a*} Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

^b Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Pharmaceutical Science, Southwest University, Chongqing 400715, China.

* Corresponding Author. *E-mail: <u>chengzhi@swu.edu.cn</u>; Tel: +86-23-68254659; Fax: +86-23-68367257*

‡ These people contributed equally to this work.

Fig. S1 TEM image of GO sheets.

Fig. S2 (A) TEM image and (B) SEM image of $Cu_{2-x}Se_yS_{1-y}/rGO$ nanocomposites prepared with a reactant S/Se molar ratio of 3:1. The white arrow suggests the hollow opening.

Fig. S3 (A) Detection of H_2S gas bubble by wet lead acetate test paper on the bottle. (B) The color of lead acetate test paper turns yellow-black, which confirms the release of H_2S gas bubble from the solvent. The white arrows suggest the PbS black precipitate.

Fig. S4 EDX spectra of $Cu_{2-x}Se_yS_{1-y}/rGO$ nanocomposites synthesized with various reactant S/Se molar ratios. (A) 0:1; (B) 1:1; (C) 2:1; (D) 3:1; (E) 4:1; (F) 5:1.

Fig. S5 The survey XPS spectrum of GO.

Fig. S6 FTIR spectra of GO and $Cu_{2-x}Se_yS_{1-y}/rGO$ nanocomposites (synthesized with a reactant S/Se molar ratio of 3:1). The oxygen-containing functional groups of GO afforded bands at 3433,

1734, 1388 and 1060 cm⁻¹, which were associated with the -OH vibration, the C=O stretching vibration, the C-O-H deformation and the alkoxy C-O stretching vibration peaks, respectively. The peak at 1631 cm⁻¹ (aromatic C=C) could be assigned to the skeletal vibrations of unoxidized graphite domains. In the spectrum of $Cu_{2-x}Se_yS_{1-y}/rGO$ nanocomposites, the difference from that of GO was evidenced by the entire disappearance of the C=O stretching vibration peak and the dramatic decrease of other oxygen-containing functional group peaks, which confirmed that GO had been reduced to rGO.

Fig. S7 SEM images of $Cu_{2-x}Se_yS_{1-y}$ NPs synthesized with PSS as capping agent with different S/Se molar ratios, while the other experiment conditions were kept same as those used for preparing $Cu_{2-x}Se_yS_{1-y}/rGO$ nanocomposites. (A) 0:1; (B) 1:1; (C) 2:1; (D) 3:1; (E) 4:1; (F) 5:1.

Fig. S8 EDX spectra of $Cu_{2-x}Se_yS_{1-y}$ NPs synthesized with PSS as capping agent with different S/Se molar ratios. (A) 0:1; (B) 1:1; (C) 2:1; (D) 3:1; (E) 4:1; (F) 5:1.

S/Se molar ratios	EDX analysis (mean atomic percent)			Compositions of
in reactants	Cu	Se	S	Cu _{2-x} Se _y S _{1-y} @PSS NPs
1:1	30.32	12.34	10.10	$Cu_{1.35}Se_{0.55}S_{45}$
2:1	40.03	13.34	17.19	$Cu_{1.31}Se_{0.44}S_{0.56}$
3:1	23.11	8.94	12.93	$Cu_{1.06}Se_{0.40}S_{0.60}$
4:1	11.73	15.67	9.13	$Cu_{0.47}Se_{0.63}S_{0.37}$
5:1	17.58	9.01	12.43	$Cu_{0.82}Se_{0.42}S_{0.58}$

 $\textbf{Table S1} \ \text{EDX} \ \text{analysis of } Cu_{2\text{-}x}Se_yS_{1\text{-}y} @ \text{PSS NPs prepared with reactants of various S/Se ratios.}$