Supplementary Information

Preparation and application of amorphous Fe-Ti bimetal oxides for arsenic removal

Pinhua Rao^{a†}, Zhaowei Sun^{a,b†}, Wenqi Zhang^a, Wei Yao^a, Luanjiao Wang^a, Guoyu Ding^{b,c*}

^a School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

^b School of Environment, Tsinghua University, Beijing 100084, China

^c Beijing Municipal Research Institute of Environmental Protection, Beijing 10037, China

[†] Authors contributed equally.

* Corresponding author's email: <u>dingguoyu@tsinghua.org.cn</u> (Guoyu Ding)

Number of SI pages: 13

Number of tables: 5

Number of figures: 6

Captions of Tables and Figures

- Table S1 Fe: Ti molar ratio determined by classical chemical analysis
- Table S2 Arsenic removal efficiency of bimetal oxides with different Fe:Ti molar ratios
- Table S3 Freundlich and Langmuir isotherms parameters for As(III) and As(V)adsorption on BM-3
- Table S4 Composition of different types of water samples
- Table S5 Arsenic removal efficiency with different types of water samples
- Fig. S1 XRD patterns of the bimetal oxides after heating at 600 °C.
- Fig. S2 Dissolved Fe and Ti of BM-3 at different pHs.
- Fig. S3 Zeta potential of BM-3 before and after As(III) and As(V) adsorption.
- Fig. S4 Dosage effect of Fe-Ti bimetal oxides on Arsenic (III) removal. Initial concentration of arsenic, 5 mg L⁻¹; background electrolyte, 0.05 mol L⁻¹ NaCl; pH, 7.0±0.1.
- Fig. S5 Arsenic removal efficiencies of reused adsorbent
- Fig. S6 (a) SEM, and (b) XRD of the adsorbent BM-3 after 3 times recycle.

No.	Abbreviation	Molar ratio of Fe and Ti determined
1	S-Ti	0:1
2	BM-1	0.17:0.83
3	BM-2	0.45:0.55
4	BM-3	0.78:0.22
5	S-Fe	1:0

Table S1 Fe:Ti molar ratio determined by classical chemical analysis

The compositions of the bimetal oxides were determined by classical chemical analysis. An amount of the oxide was treated with concentrated sulfuric acid solution and at 80 °C. The oxide was dissolved to form Fe and Ti ions entered into the solution. The content of Fe and Ti was determined using an ICP-OES (700-ES, Varian). The molar ratios of Fe: Ti are shown in Table S1.

	Table S2 Arsenie	c removal efficiency	of bimetal	oxides with	different F	'e:Ti molar
--	------------------	----------------------	------------	-------------	-------------	-------------

ratios

Adsorbe	nt	S-Ti	BM-1	BM-2	BM-3	S-Fe
Removal	As(III)	75.3	89.8	93.4	96.5	86.8
efficiency (%)	As(V)	26.6	65.1	80.1	74.1	70.2

Note: Adsorbent dosage, 0.25 g L-1; initial arsenic concentration, 5.0 mg L-1; background

electrolyte, 0.05 mol L⁻¹ NaCl; pH, 7.0±0.1.

Table S3 Freundlich and Langmuir isotherms parameters for As(III) and As(V)

Freundlich			Langmuir			
Widdei	k _d	n	R ²	k	b	R ²
As(III)	36.49	2.88	0.9950	0.44	111.37	0.9633
As(V)	13.42	4.06	0.9736	0.64	31.42	0.9690

adsorption on BM-3

	Surface water	Groundwater	Simulated water
рН	7.2±0.1	7.3±0.1	7.0±0.1
HCO_{3}^{-} (mg L ⁻¹)	112.2	173.1	_
Cl ⁻ (mg L ⁻¹)	97.6	262.3	1775
SO ₄ ²⁻ (mg L ⁻¹)	50.2	99.0	_
PO_4^{3-} (mg L ⁻¹ as P)	0.023	N.D.	_

Table S4 Composition of different types of water samples

Table S5 Arsenic removal efficiency with different types of water samples

	As(III) removal efficiency (%)	As(V) removal efficiency (%)
Surface water	86.63	51.79
Groundwater	88.68	54.07
Simulated water	89.05	55.00

Fig. S1 XRD patterns of the bimetal oxides after heating at 600 °C.

No sharp peaks appeared in the XRD of the synthesized bimetal oxides, thus the bimetal oxides were heated to 600 °C. The XRD patterns of the heated bimetals are displayed in Fig. S1. According to XRD library, peaks at 25.3°, 27.4°, 37.8°, 41.2°, 48.0°, 53.9°,55.1°, and 62.7° are characteristic peaks of TiO₂; peaks at 18.1°, 25.5°, 32.5°, 36.6°, 37.3°, 46.0°, 48.8°, and 59.8° are characteristic peaks of Fe₂TiO₅; peaks at 32.1°, 36.2°, 41.3°, and 54.4° are characteristic peaks of Fe₂Ti₃O₉; peaks at 24.1°, 33.2°, 35.6°, 40.9°, 49.5°, 54.1°, 62.4° and 64.0° are characteristic peaks of Fe₂O₃. Based on the abundance of peaks, BM-1 is mainly comprised of TiO₂ with partial Fe₂TiO₅ and a little Fe₂Ti₃O₉; BM-2 mainly contains Fe₂TiO₅ with partial TiO₂ and a little Fe₂Ti₃O₉; BM-3 is mainly Fe₂O₃ with a little TiO₂. Without heating, all the oxides appeared in the amorphous form.

Fig. S2 Dissolved Fe and Ti of BM-3 at different pHs.

Fig. S3 Zeta potential of BM-3 before and after As(III) and As(V) adsorption.

Fig. S4 Dosage effect of Fe-Ti bimetal oxides on Arsenic (III) removal. Initial concentration of arsenic, 5 mg L⁻¹; background electrolyte, 0.05 mol L⁻¹ NaCl; pH, 7.0±0.1.

Fig. S5 Arsenic removal efficiencies of reused adsorbent

Fig. S6 (a) SEM, and (b) XRD of the adsorbent BM-3 after 3 times recycle.