ELECTRONIC SUPPLEMENTARY INFORMATION

for

Intramolecular hydrogen bonding guides a cationic amphiphilic organocatalyst to highly stereoselective aldol reactions in water.

Ángel M. Valdivielso, Alba Catot, Ignacio Alfonso*, and Ciril Jimeno*.
Department of Biological Chemistry and Molecular Modelling. Institute of Chemical Research of Catalonia (IQACCSIC). c/Jordi Girona 18-26, E08034 Barcelona (Spain).

ignacio.alfonso@iqac.csic.es, ciril.jimeno@iqac.csic.es

1. Synthesis of acylguanidine 1a S2
2. Synthesis of guanidine $\mathbf{1 b}$ S3
3. NMR spectra of compounds $\mathbf{A}, \mathbf{B}, \mathbf{1 a}, \mathbf{E}$, and $\mathbf{1 b}$ S5
4. Typical procedure for the asymmetric aldol reaction in water catalyzed by $\mathbf{1 a}$ S10
5. Effect of the amount of aqueous phase S10
6. Effect of added surfactants. S11
7. ${ }^{1} \mathrm{H}$ NMR and HPLC data of aldol products. S11
8 DFT (B3LYP/6-31G+) calculated more stable conformers with the full dodecyl chain. S22
8. References S23

1. Synthesis of acylguanidine 1a:

1.a) Synthesis of guanidyl-proline compound A

To a solution of Boc-Pro-OH ($1.00 \mathrm{~g}, 4.65 \mathrm{mmol}$) in dry DMF $(46.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added successively EDC $\cdot \mathrm{HCl}\left(981 \mathrm{mg}, 5.12 \mathrm{mmol}\right.$), $\mathrm{HOBt} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ ($942 \mathrm{mg}, 6.98 \mathrm{mmol}$), DIPEA ($870 \mu \mathrm{~L}$, 5.12 mmol) and DMAP ($57 \mathrm{mg}, 0.47 \mathrm{mmol}$). After 30 min , Boc-guanidine ($1.11 \mathrm{~g}, 6.97 \mathrm{mmol}$) was added and the mixture was stirred overnight at room temperature. The, the mixture was diluted with EtOAc (150 mL) and washed with saturated $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and brine ($2 \times 30 \mathrm{~mL}$), dried over MgSO_{4} and solvent removed. The crude product was purified by column chromatography using a gradient of MeOH in $\mathrm{DCM}(0$ to $4 \%)$ to give $\mathbf{A}(1.60 \mathrm{~g}, 96 \%)$ as a white foam.

IR (ATR) 3375, 2974, 1701, 1664, 1630, $1535 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.23-8.12 (m, $3 \mathrm{H}), ~ 4.39-4.24(\mathrm{~m}, 0.5 \mathrm{H}), ~ 4.21-4.09(\mathrm{~m}, 0.5 \mathrm{H}), 3.62-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.95(\mathrm{~m}$, $1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 2 \mathrm{H})$; MS (ESI-TOF) $357.2138(\mathrm{M}+\mathrm{H})^{+}, 713.4230(2 \mathrm{M}+\mathrm{H})^{+}$; calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}: 357.2132(\mathrm{M}+\mathrm{H})^{+}, 713.4192(2 \mathrm{M}+\mathrm{H})^{+} ;[\alpha]_{\mathrm{D}}=-72.3\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

1.b) Synthesis of dodecyl-guanidyl proline compound B.

To a solution of the guanidyl proline $\mathbf{A}(1.49 \mathrm{~g}, 4.19 \mathrm{mmol})$ in dry DCM $(40 \mathrm{~mL})$ under nitrogen atmosphere at $0{ }^{\circ} \mathrm{C}$ was added dry $\mathrm{NaH}(222 \mathrm{mg}, 8.80 \mathrm{mmol})$ and the reaction mixture was stirred for one hour at $0^{\circ} \mathrm{C}$. After that, the slightly yellow solution was cooled to $-60^{\circ} \mathrm{C}$ and triflic acid anhydride ($846 \mu \mathrm{~L}, 5.03 \mathrm{mmol}$) was added. The reaction mixture was stirred for three hours at -60 ${ }^{\circ} \mathrm{C}$, warmed up to room temperature within two hours and was stirred overnight. Afterwards, water was added dropwise under vigorous stirring until no more gas evolved. Then, triethylamine (1.75 $\mathrm{mL}, 12.6 \mathrm{mmol}$) and dodecylamine ($923 \mathrm{mg}, 5.03 \mathrm{mmol}$) were added and the mixture was stirred over weekend at room temperature. The reaction mixture was diluted with DCM (100 mL) and washed with saturated $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ and brine ($2 \times 30 \mathrm{~mL}$), dried over MgSO_{4} and solvent removed. The crude product was purified by flash chromatography using hexane:EtOAc mixtures to give B ($1.66 \mathrm{~g}, 76 \%$) as a colorless oil.

IR (ATR) 3320, 2975, 2925, 2854, 1698, 1620, 1613, $1563 \mathrm{~cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 12.93-12.87 (m, 0.6H), 12.12-12-07 (m, 0.2H), 12.04-12.00 (m, 0.2H), 8.86-8.71 (m, 0.6H), 8.43$8.33(\mathrm{~m}, 0.4 \mathrm{H}), 4.37-4.26(\mathrm{~m}, 0.4 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 0.6 \mathrm{H}), 3.67-3.28(\mathrm{~m}, 4 \mathrm{H}), 2.33-2.10(\mathrm{~m}, 1 \mathrm{H})$,
2.09-2.01 (m, 0.6H), 1.98-1.86 (m, 2H), 1.82-1.75 (m, 0.6H), 1.67-1.19 (m, 38H), 0.86 (t, 3H, $J=7$ $\mathrm{Hz})$; MS (ESI-TOF) $525.3859(\mathrm{M}+\mathrm{H})^{+}, 1049.7899(2 \mathrm{M}+\mathrm{H})^{+}, 1071.7765(2 \mathrm{M}+\mathrm{Na})^{+}$; calculated for $\mathrm{C}_{28} \mathrm{H}_{52} \mathrm{~N}_{4} \mathrm{O}_{5}: 525.4010(\mathrm{M}+\mathrm{H})^{+}, 1049.7948(2 \mathrm{M}+\mathrm{H})^{+}, 1071.7773(2 \mathrm{M}+\mathrm{Na})^{+} ;[\alpha]_{\mathrm{D}}=-44.8(\mathrm{c}=1.0$, CHCl_{3}).

1.c) Boc-deprotection of B. Synthesis of catalyst 1a.

Compound B ($1.39 \mathrm{~g}, 2.65 \mathrm{mmol}$) was dissolved in 30% TFA in dry DCM (15 mL) and the mixture was stirred for 1 h . Then, the solvent was removed, the residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (1:5) and was lyophilized to obtain the final catalyst 1a as TFA salt, as a pale yellow waxy solid ($\mathbf{1 a} \cdot 2.3 \mathrm{TFA}, 1.55 \mathrm{~g}, 100 \%$).

IR (ATR) 3473, 3442, 2919, 2850, 1685, 1663, $1594 \mathrm{~cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.08-$ $9.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{f}-\mathrm{NH}), 9.35(\mathrm{t}, 1 \mathrm{H}, J=4 \mathrm{~Hz}, \mathrm{~h}-\mathrm{NH}), 9.27-8.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{g}-\mathrm{NH})$, 8.39-7.97 (m, 1H, gNH), $4.26(\mathrm{t}, 1 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{a}-\mathrm{H}), 3.54-3.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{d}-\mathrm{H}), 3.26(\mathrm{q}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{i}-\mathrm{H}), 2.59-2.49(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{b}-\mathrm{H}), 2.18-2.06(\mathrm{~m}, 3 \mathrm{H}, \mathrm{b}-\mathrm{H}$ and c-H$), 1.62(\mathrm{p}, 2 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{j}-\mathrm{H}), 1.37-1.18\left(\mathrm{~m}, 18 \mathrm{H}, 9 \mathrm{CH}_{2}\right)$, $0.86(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz}, \mathrm{k}-\mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.5[\mathrm{CO}], 162.1[\mathrm{q}, J=37 \mathrm{~Hz}, \mathrm{CO}$ (TFA)], 153.5 [guanidine], 116.0 [$\mathrm{q}, ~ J=291 \mathrm{~Hz}, \mathrm{CF}_{3}$ (TFA)], 60.5 [C_{a}], 46.7 [C_{d}], 42.0 [C C_{i}], 31.9 [$\left.\mathrm{CH}_{2}\right], 29.6\left[\mathrm{CH}_{2}\right], 29.5\left[\mathrm{CH}_{2}\right], 29.3\left[\mathrm{C}_{\mathrm{b}}\right], 29.0\left[\mathrm{CH}_{2}\right], 27.7\left[\mathrm{C}_{\mathrm{j}}\right], 26.5\left[\mathrm{CH}_{2}\right], 24.0\left[\mathrm{C}_{\mathrm{c}}\right], 22.6\left[\mathrm{CH}_{2}\right]$, $14.0\left[\mathrm{C}_{\mathrm{k}}\right]$; MS (ESI-TOF) $325.2950(\mathrm{M}+\mathrm{H})^{+}, 649.5867(2 \mathrm{M}+\mathrm{H})^{+}$; calculated for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$: $325.2962(\mathrm{M}+\mathrm{H})^{+}, 649.5851(2 \mathrm{M}+\mathrm{H})^{+} ;[\alpha]_{\mathrm{D}}=-28.0\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

2. Synthesis of guanidine 1b:

2.a) Transformation of thiourea D into Boc-protected guanidine E. ${ }^{1}$

To a solution of the thiourea $\mathbf{D}(800 \mathrm{mg}, 1.87 \mathrm{mmol})$ in dry DCM $(10 \mathrm{ml})$ were added $\mathrm{HgO}(567$ $\mathrm{mg}, 2.62 \mathrm{mmol})$ and 7 M ammonia in $\mathrm{MeOH}(10 \mathrm{~mL})$. The mixture was stirred overnight at $60^{\circ} \mathrm{C}$. After TLC check, more $\mathrm{HgO}(567 \mathrm{mg}, 2.62 \mathrm{mmol})$ and 7 M ammonia in $\mathrm{MeOH}(10 \mathrm{~mL})$ were added and the mixture was heated overnight at $70^{\circ} \mathrm{C}$. Finally, it was filtered through Celite, the solvent was evaporated and the crude product was purified by flash chromatography using of
$\mathrm{DCM} / \mathrm{MeOH}$ mixtures with some drops of aqueous ammonia to give guanidine \mathbf{E} as a brown waxy solid (448 mg, 58\%).

IR (ATR) 2923, 2852, 1668, $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.07-6.86 (m, 3H), 4.12$3.55(\mathrm{~m}, 1 \mathrm{H}), 3.43-2.95(\mathrm{~m}, 6 \mathrm{H}), 2.04-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.14(\mathrm{~m}$, $18 \mathrm{H}), 0.85(\mathrm{t}, 3 \mathrm{H}, J=7 \mathrm{~Hz})$; MS (ESI-TOF) $411.3612(\mathrm{M}+\mathrm{H})^{+}$; calculated for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{~N}_{4} \mathrm{O}_{2}$: $411.3694(\mathrm{M}+\mathrm{H})^{+} ;[\alpha]_{\mathrm{D}}=-10.7\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right)$.

2.b) Boc-deprotection of E. Synthesis of catalyst 1 b .

Compound E ($562 \mathrm{mg}, 1.10 \mathrm{mmol}$) was dissolved in $30 \% \mathrm{TFA}$ in dry DCM (6 mL) and the mixture was stirred for 1 h . Then, the solvent was removed in vacuo, the residue was dissolved in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (1:5) and was lyophilized to obtain the final catalyst $\mathbf{1 b}$ as a TFA salt, as a brown oil (1b 2.6 TFA, $668 \mathrm{mg}, 100 \%$).

IR (ATR) 2925, 2855, 1664, $1629 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}(400 \mathrm{MHz}$, DMSO-d6) $\delta 9.71-9.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{h}-$ NH), 9.15-8.79 (m, 1H, h-NH), 8.28-7.11 (m, 5H, e-NH, g-NH and i-NH), 3.81-3.56 (m, 1H, a-H), 3.55-3.38 (m, 2H, f-H), 3.29-3.01 (m, 4H, d-H and j-H), 2.12-2.00 (m, 1H, b-H), 1.99-1.83 (m, 2H, $\mathrm{c}-\mathrm{H}), 1.69-1.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{b}-\mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{k}-\mathrm{H}), 1.32-1.18\left(\mathrm{~m}, 18 \mathrm{H}, 9 \mathrm{CH}_{2}\right), 0.89(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7$ $\mathrm{Hz}, \mathrm{l}-\mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO-d6) $\delta 158.7$ [q, $J=34.5 \mathrm{~Hz}$, CO (TFA)], 157.7 [guanidine], $116.2\left[\mathrm{q}, J=294 \mathrm{~Hz}, \mathrm{CF}_{3}(\mathrm{TFA})\right], 58.2\left[\mathrm{C}_{\mathrm{a}}\right], 44.9\left[\mathrm{C}_{\mathrm{d}}\right], 41.8\left[\mathrm{C}_{\mathrm{f}}\right], 41.0\left[\mathrm{C}_{\mathrm{i}}\right], 31.3\left[\mathrm{CH}_{2}\right], 29.1\left[\mathrm{CH}_{2}\right]$, $29.0\left[\mathrm{CH}_{2}\right], 28.7\left[\mathrm{CH}_{2}\right], 28.3\left[\mathrm{C}_{\mathrm{k}}\right], 27.3\left[\mathrm{C}_{\mathrm{b}}\right], 26.1\left[\mathrm{CH}_{2}\right], 22.9\left[\mathrm{C}_{\mathrm{c}}\right], 22.1\left[\mathrm{CH}_{2}\right], 13.9\left[\mathrm{C}_{1}\right] ;$ MS (ESITOF) $311.3164(\mathrm{M}+\mathrm{H})^{+}$; calculated for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{~N}_{4}: 311.3169(\mathrm{M}+\mathrm{H})^{+}$; $[\alpha]_{\mathrm{D}}=+12.5(\mathrm{c}=1.0$, CHCl_{3}).

3. NMR spectra of compounds $A, B, 1 a, E$, and $1 b$:

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR(400 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}, \mathrm{COSY}\right)$:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, ROESY):

Catalyst $\mathbf{1 a}$ is not soluble in water nor $\mathrm{D}_{2} \mathrm{O}$. Fast exchange of protons 1-3 takes place upon addition of some drops of $\mathrm{D}_{2} \mathrm{O}$. COSY and ROESY experiments were performed in $\mathrm{CD}_{3} \mathrm{CN}$ rather than in CDCl_{3} (dielectric constant 4.81) because its dielectric constant (37.5) lies between cyclohexanone (18.20) and water (80).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:

${ }^{1} \mathrm{H}$ NMR(400 MHz, DMSO- ${ }^{6}$):

${ }^{13} \mathrm{C}$ NMR(100 MHz , DMSO-d ${ }^{6}$):

4. Typical procedure for the asymmetric aldol reaction in water catalyzed by 1a.

In a flask, catalyst $\mathbf{1 a}(0.045 \mathrm{mmol}, 26 \mathrm{mg})$ was weighed, and dissolved in cyclohexanone $(0.47 \mathrm{ml}$, $4.50 \mathrm{mmol})$. Then, the aldehyde (0.450 mmol) and a pH 7 buffer solution ($0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO} 4$ and 0.1 M citric acid) were added. The mixture was vigorously stirred for 48 hours (at 1000 rpm). Then, it was transferred to a separation funnel and diluted with water and dichloromethane. The organic layer was separated, and the aqueous layer extracted twice again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography eluting with hexane:ethyl acetate mixtures of increasing polarity.

5. Effect of the amount of aqueous phase

$10 \mathrm{~mol} \%$ cat 1a.
0.35 ml cyclohexanone $+35 \mu \mathrm{l}$ benzaldehyde + citrate/phosphate pH 7 buffer

Added buffer pH 7 volume/ ml	Conversion/\%	d.r. (anti/syn)	ee/\% (anti)
0.65	73	$12 / 1$	88
0.33	88	$8.6 / 1$	88
0.16	$69(66$ yield)	$36 / 1$	89
0.08	46	$11 / 1$	79

6. Effect of added surfactants.

$10 \mathrm{~mol} \%$ cat 1 a .
0.35 ml cyclohexanone $+35 \mu \mathrm{l}$ benzaldehyde +0.16 ml citrate/phosphate pH 7 buffer

Amount of catalyst 1a $($ mol\%)	Amount of surfactant $($ mol\%)	Conversion/\%	d.r. (anti/syn)	ee/\% (anti)
10	5% SDS	66	17	90
10	10% SDS	30	12	93
10	20% SDS	21	9.8	92
10	50% SDS	17	7.3	93
$10^{\text {a }}$	10\% 1-dodecanol	89	$21 / 1$	89
$5^{\text {a }}$	10\% 1-dodecanol	40	$7 / 1$	87
$5^{\text {a }}$	20\% 1-dodecanol	52	$10 / 1$	89

${ }^{\text {a }}$ Reaction performed on p-chlorobenzaldehyde as substrate.

7. ${ }^{1} \mathrm{H}$ NMR and HPLC data of aldol products.

HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}, 10 \%$ iso-propanol, 209 nm (Crude product, 13\% conversion).

$[\alpha]_{D}=+22.4\left(c=1.0, \mathrm{CHCl}_{3}, 89 \%\right.$ ee $)$, lit. $[\alpha]_{D}=+27.7\left(c=0.85, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)^{2}$
HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}$, 3\% iso-propanol, 209 nm .

HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}$, 3\% iso-propanol, 209 nm .

HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}$, 3\% iso-propanol, 209 nm .

$[\alpha]_{D}=+23.4$ (c = 1.0, $\left.\mathrm{CHCl}_{3}, 93 \% \mathrm{ee}\right)$, lit. $[\alpha]_{\mathrm{D}}=+21.7\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3},>99 \% \mathrm{ee}\right)^{3}$
HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}$, 3\% iso-propanol, 209 nm .

mV
C:ILabSolutions1DatalProject1 IAnna Serra\AS266.Icd

HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}$, 3\% iso-propanol, 209 nm .

mV
C: LLabSolutions\DatalProject1 1cirillCJM435.Icd

mV

HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}$, 3\% iso-propanol, 209 nm .

mV
C:ILabSolutionsIDatalProject1|cirillcjm431.Icd

mV

HPLC: OD column, $1 \mathrm{ml} / \mathrm{min}$, 5\% iso-propanol, 209 nm .

mV
C:ILabSolutionsIDatalProject1\Anna SerralAS290RAC6_OD.Icd

mV

cjm455f2_PROTON_V400_16Apr15_01 cjm455f2

HPLC: ID column, $1 \mathrm{ml} / \mathrm{min}, 5 \%$ iso-propanol, 209 nm .

HPLC: IC column, $1 \mathrm{ml} / \mathrm{min}, 10 \%$ iso-propanol, 209 nm.

HPLC (ID, $1 \mathrm{ml} / \mathrm{min}, 3 \%$ IPA, 209 nm)
 chain.

Calculation performed with Spartan' 10, Wavefunction Inc., Irvine (CA).

Rel. Energy $=0 \mathrm{Kcal} / \mathrm{mol}$

Rel energy $=+1.06 \mathrm{Kcal} / \mathrm{mol}$

Rel. Energy = +1.97 Kcal/mol

Rel. Energy $=+2.14 \mathrm{Kcal} / \mathrm{mol}$

9. References

1. D. A. Leigh, C. C. Robertson, A. M. Z. Slawin, P. I. T. Thomson. J. Am. Chem Soc. 2013, 135, 9939-9943.
2. Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh, T. Urushima, M. Shoji, Angew. Chem. Int. Ed., 2006, 45, 958 - 961 .
3. Y. Wu, Y. Zhang, M. Yu, G. Zhao, S. Wang, Org. Lett., 2006 , 8, $4417-4420$.
