Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

## Photocatalytic degradation of methylene blue with hematite nanoparticles synthesized by thermal decomposition of fluoroquinolones oxalato-iron(III) complexes

Ahmed M. Mansour\*

Chemistry Department, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt

Supporting Information

E-mail: mansour@sci.cu.edu.eg; inorganic\_am@yahoo.com



c)

Fig. S1: Experimental FT IR spectra of a) ciprofloxacin·HCl, b) lomefloxacin·HCl and c) norfloxacin.







b)



c)

Fig. S2: Experimental FT IR spectra of complexes a) 1, b) 2 and c) 3.



Fig. S3: Experimental electronic absorption spectra of the investigated complexes in DMSO.



**Fig. S4:** Theoretical TD-DFT spectra of the investigated complexes in DMSO calculated at DFT/B3LYP/6-31G(d) level of theory.



c)

Fig. S5: XRD patterns of nano-hematite obtained from the controlled thermal decomposition of complexes a) 1, b) 2 and c) 3.



a)



c)



Fig. S6: FE-SEM images of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> nanoparticles obtained from thermal decomposition of a) 1, b) 2 and c) 3 by magnification of 40 000x.



**Fig. S7**: Absorption spectral changes and photo-degradation of MB by H<sub>2</sub>O<sub>2</sub> under the effect of UV light at 365 nm (Control experiment).



**Fig. S8**: Absorption spectral changes and photo-degradation of MB by H<sub>2</sub>O<sub>2</sub> in presence of hematite nanoparticles No. 1 under the effect of UV light at 365 nm.

**Table S1:** Second-order interaction energy ( $E^2$ , kcal/mol) between donor and acceptor orbitals in the studied complexes 1-3 calculated at DFT/B3LYP/6-31G(d) level of theory (selected)

| Donor→Acceptor                    |      | $E^2$ (kcal/mol) |      |  |
|-----------------------------------|------|------------------|------|--|
|                                   | 1    | 2                | 3    |  |
| $LP(3)O2 \rightarrow RY^*(3)Fe$   | 1.07 | 1.08             | 1.08 |  |
| $LP(2)O3 \rightarrow RY^{*}(4)Fe$ | 0.72 | 0.70             | 0.69 |  |
| $LP(3)O4 \rightarrow RY^{*}(2)Fe$ | 1.27 | 1.28             | 1.27 |  |
| LP(2)O5→RY <sup>*</sup> (3)Fe     | 1.33 | 1.33             | 1.33 |  |
| $LP(2)O6 \rightarrow RY^{*}(4)Fe$ | 0.89 | 0.91             | 0.90 |  |
| LP(3)O7→RY <sup>*</sup> (2)Fe     | 1.32 | 1.33             | 1.32 |  |