Electronic Supplementary Information (ESI)

for

Face-to-Face Stacking in Sulfonamide Based Bis-ethylene Bridged Heteroaromatic Dimers

Ranjeet Kumar, ${ }^{\text {al }}$ Sunil K. Rai, ${ }^{\text {al }}$ Praveen Singh, ${ }^{\text {a }}$ Archana Gaurav, ${ }^{\text {a }}$ Pratima Yadav, ${ }^{\text {a }}$ Ranjana S. Khanna, ${ }^{a}$ Hariom Gupta ${ }^{\text {b }}$ and Ashish K. Tewaria*
${ }^{\text {a Department of Chemistry (Center of Advanced Studies), Faculty of Science, Banaras Hindu }}$ University, Varanasi, 221005, INDIA.
${ }^{\text {b }}$ Analytical Discipline and Centralized Instrument Facility, CSMCRI, Gijubhai Badheka Marg, Bhavnagar 364021, Gujarat, India.
'Both authors have contributed equally.
Email: tashish2002@yahoo.com

Contents

1- Single Crystal X-Ray Analysis. ...1-6
2. Computational studies..7-8

3- Copies of ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ spectra..9-17

1- Single Crystal X-Ray Analysis:

Fig. S1. ORTEP diagram and packing of compound 2a depicted along a, b and c axis.

Fig. S2. ORTEP diagram and packing of compound $\mathbf{2 b}$ depicted along a, b and c axis.

Fig. S3. ORTEP diagram and packing of compound $\mathbf{2 c}$ depicted along a, b and c axis.

Fig. S4. ORTEP diagram and packing of compound $\mathbf{2 d}$ depicted along a, b and c axis.
\# Responses to the Validation Reply Form
_vrf_RFACG01_2a;
PROBLEM: The value of the R factor is >0.10
RESPONSE: Crystals diffracted extremely weakly. Multiple attempts were made to grow better diffracting crystals. Data was collected many times but all results were consistent with the model in this report. However, all yielded serious problems due to weak diffraction and disorder in the atom positions. The high weighted R factor results from the weak diffraction, and the inclusion of reflections that are essentially unobserved.
_vrf_PLAT082_2a;
PROBLEM: High R1 Value
0.11 Report

RESPONSE: Crystals diffracted extremely weakly. Multiple attempts were made to grow better diffracting crystals. Data was collected many times but all results were consistent with the model in this report. However, all yielded serious problems due to weak diffraction and disorder in the atom positions. The high weighted R factor results from the weak diffraction, and the inclusion of reflections that are essentially unobserved.
_vrf_PLAT094_2a;
PROBLEM: Ratio of Maximum / Minimum Residual Density 2.54 Report

RESPONSE: These alerts are generated because there is a large amount of disorder in the structure.
_vrf_PLAT220_2a;
PROBLEM: Large Non-Solvent C Ueq(max)/Ueq(min) Range 3.4 Ratio

RESPONSE: C-atoms were introduced in calculated positions and refined on a riding model. Uiso(C) was calculated from $U($ ave $)$ of the atom.
_vrf_PLAT234_2a;
PROBLEM: Large Hirshfeld Difference N5 -- C28 .. 0.17 Ang.

RESPONSE: RIGU restraints were applied to atoms in the disordered chains. Several of the atoms were still not ideally shaped, however, this does not indicate an incorrect atom-type assignment.
_vrf_PLAT230_2b
PROBLEM: Hirshfeld Test Diff for S1 -- O1 .. 7.5 su

RESPONSE: RIGU restraints were applied to atoms in the disordered chains. Several of the atoms were still not ideally shaped, however, this does not indicate an incorrect atom-type assignment.

Table-S1: Intermolecular interactions in 2a, 2b, 2c and 2d.

Crystals	Interaction	d(\AA)	D(\AA)	$\boldsymbol{\theta}$ (d)	Symmetry Code
2a					
	C67-H67 \cdots N4	0.93	2.691	135.0	-x,-1/2+y,1/2-z
	C17A-H17A \cdots O2	0.93	2.510	133.6	-1+x,y,z
	C72-H72A \cdots O3	0.970	2.334	146.3	-x,1-y,1-z
	C27-H27B \cdots O7	0.971	2.345	142.2	$1-x, 1-y, 1-z$
	C91-H91C \cdots N14	0.96	2.55	148	$2-\mathrm{x}, 1 / 2+\mathrm{y}, 1.5-\mathrm{z}$
	C62A-H62A \cdots O5	0.93	2.480	133.2	-1+x,y,z
	C82-H82 \cdots O5	0.93	2.560	149.2	-x,2-y,1-z
	C94-H94B $\cdots \mathrm{N} 7$	0.96	2.69	158	-1+x,y,z
	C92-H92B $\cdots \mathrm{N} 12$	0.98	2.722	145	1-x,1/2+y, $1.5-\mathrm{z}$
	C35-H35 $\cdots \pi$ (Centroid of pyridazinone phenyl)	0.93	3.514	143.36	
	C21-H21 $\cdots \pi$ (Centroid of pyridazinone phenyl)	0.93	3.659	128.51	
	C16A-H16A $\cdots \pi$ (Centroid of PTS ring)	0.93	3.252	136.84	
	C86-H86 $\cdots \pi$ (Centroid of pyridazinone phenyl)	0.93	3.686	159.93	
	C63A-H63A $\cdots \pi$ (Centroid of PTS ring)	0.93	3.057	136.72	
2b					
	C11-H11A \cdots N5	0.970	2.679	114.1	-x,-y,2-z
	C17-H17A \cdots N5	0.960	2.742	178.2	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$
	C15-H15 \cdots O	0.931	2.707	145.2	$x, 1+y, z$
	C13-H13B \cdots O2	0.960	2.448	127.7	$\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$
	C25-H25 \cdots O1	0.930	2.550	140.7	-1+x,y,z
	C6-H6 \cdots O3	0.931	2.431	160.2	$-1+x, y, z$
	C8-H8A \cdots O3	0.960	2.650	157.1	$-1+x, y, z$
	C27-H27C $\cdots \pi$ (Centroid of pyridone ring)	0.960	3.759	120.78	
	C8C-H8C $\cdots \pi$ (Centroid of PTS ring)	0.960	3.421	121.36	
	C12-H12A $\cdots \pi$ (Centroid of pyridone ring)	0.970	3.461	114.87	
2c					
	$\pi \cdots \pi$ (Centroid of five member ring of pyrazolone)		3.943		
	C28-H28 $\cdots \mathrm{O} 4$	0.928	2.454	173.2	1-x,-y,1-z
	C19H19A \cdots O3	0.970	2.630	128.8	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$
	C6H6 ${ }^{\text {O }}$ O	0.931	2.555	132.0	$2-x,-1-y, 1-z$
	C26-H26B $\cdots \pi$ (Centroid of pyrazolone phenyl)	0.961	3.078	157.71	
	C16-H16 $\cdots \pi$ (Centroid of pyrazolone phenyl)	0.930	3.014	122.30	
	C049-H049 $\cdots \pi$ (Centroid of pyrazolone phenyl)	0.930	3.165	132.59	
	C11-H1B $\cdots \pi$ (Centroid of pyrazolone phenyl)	0.969	2.859	163.94	
	C2-H2 $\cdots \pi$ (Centroid of pyrazolone phenyl)	0.930	3.356	146.07	
2d					
	C24-H24 \cdots O2	0.930	2.691	138.2	$\begin{gathered} \hline-1 / 2+x, 1.5-y,- \\ 1 / 2+z \end{gathered}$
	C19-H19 \cdots O3	0.930	2.662	129.1	$\begin{gathered} -1 / 2+\mathrm{x},-1 / 2-\mathrm{y},- \\ 1 / 2+\mathrm{z} \end{gathered}$
	C3-H3 \cdots O3	0.930	2.579	130.0	$\mathrm{x},-1+\mathrm{y}, \mathrm{z}$
	C17-H17 \cdots O5	0.930	2.470	119.8	$x,-1+y, z$
	C20-H20 $\cdots \pi$ (Centroid of PTS phenyl)	0.930	3.144	123.86	
	C19-H19 $\cdots \pi$ (Centroid of Pthalimide ring)	0.930	3.278	119.12	119.12
	C27-H27B $\cdots \pi$ (Centroid of PTS phenyl)	0.959	3.458	124.49	124.49

2. Computational studies:

Fig. S5 Crystal structure of compound 2a showing two molecules in asymmetric unit.
Table S2: Intramolecular interaction and geometry parameters of compounds $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{2 d}$ calculated at ω B97X-D /6-31G (d, p) level of theory compared with crystal structures.

3-Copies of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra:

${ }^{1} \mathbf{H}$-NMR spectra of \mathbf{N}, \mathbf{N}-bis(2-chloroethyl)-4-methylbenzenesulfonamide (1):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of N, N-bis(2-(5-cyano-6-oxo-3,4-diphenylpyridazin-1(6H)-yl)ethyl)-4-methylbenzenesulfonamide (2a):

${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of N, N-bis(2-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)ethyl)-4-methylbenzenesulfonamide (2b):

(

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of N, N-bis(2-((1,3-diphenyl-1H-pyrazol-5-yl)oxy)ethyl)-4methylbenzenesulfonamide (2c):

${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra of N, N-bis(2-(1,3-dioxoisoindolin-2-yl)ethyl)-4methylbenzenesulfonamide (2d):

