Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Experiment

1. The synthesis of sensor Fluorescein-Ad moiety

1.1 The synthesis of S1 and S2

According to the literature [8], fluorescein (6 g, 18.1 mmol), 24 mL hydrazine hydrate (hydrazine content >80 mass %), 50ml MeOH were dropwised. The cude product was purified by recrystallization from MeCN to give 4.7g as an off-white solid (83%). Adamantanecarboxylicacid(3.44g,19.1mmol),DMAP(0.192g,1.7mmol),EDCI(3.15g,17.1mmol),and 2,4-2 hydroxyl benzaldehyde (1.89g,13,7mmol) were dissolved into 50ml DMF.The residue was purified by flash chromatography with CH₂Cl₂/ PE(10:1) as the eluent to afford S2 (3.14g, yield: 75%) off-white

solid.

1.2 The synthesis of S3

S1 (1.048g,3,03mmol)and S2 (0.925g,3.08mmol) were dissolved in 100ml dry ethanol, and the reaction mixture was stirred under reflux and N₂.Removing the solvent, the residue was purified by flash chromatography with $CH_2Cl_2/MeOH$,50:1 as the eluent to obtain light pink solid (1.14g,yield 60%).

¹H NMR (400 MHz, DMSO) δ 10.55 (s, 1H), 9.94 (s, 2H), 9.08 (s, 1H), 7.91 (s, 1H), 7.62 (s, 2H), 7.36 (s, 1H), 7.12 (s, 1H), 6.93 – 6.25 (m, 8H), 1.86 (dd, *J* = 84.6, 23.0 Hz, 15H).

¹³C NMR (101 MHz, DMSO) δ 178.54 – 177.80 (m), 174.84 (s), 163.51 (s), 158.35 (d, J = 72.3 Hz),
157.98 – 157.25 (m), 153.25 (s), 152.10 (s), 150.57 (s), 148.87 (s), 134.23 – 133.81 (m), 129.28 (d, J = 72.3 Hz),

J = 20.3 Hz), 128.58 (s), 128.02 (s), 123.51 (d, J = 55.2 Hz), 116.93 (s), 112.88 (d, J = 70.0 Hz),

112.31 – 111.32 (m), 109.51 (d, J = 18.9 Hz), 102.55 (s), 65.15 (s), 54.91 (s), 40.41 (s), 38.49 (s),

38.09 (s), 35.91 (d, *J* = 24.7 Hz), 27.31 (d, *J* = 16.7 Hz).

ESI-MS (m/z): [M+H] + calcd for C38H32N2O7, 629; found, 628.

2. Preparation of Fe₃O₄@SiO₂- β -CD.

2.1 preparation of magnetic microspheres

According to the literature [4], $1.35g \text{ FeCl}_3 \cdot 6H_2O$ (5 mmol) was dissolved in 40mL glycol adding 3.6g NaAc and stirring for 30min. Then the mixture was put into high pressure reactor with 200°C for 12h. Cooling to indoor temperature , the product was washed by alcohol for 6 times, then vacuum drying at 60°C for 6h.

2.2 Preparation of magnetic sillica microspheres

0.5g above-mentioned magnetic microspheres, 2ml TEOS was mixed uniformly, dropwising 20ml H_2O and emulsifying 1h with ultrasonic compulsively. After that, 6ml ammonia (25%) and 25ml ethanol were dropwised stirring for 4h at room temperature with ultrasonic. The product was obtained by centrifugation, washed with alcohol, then separated magnetically

2. 3 Preparation of β -CD-SiO₂@Fe₃O₄

2.5gβ-CD was dissolved in 50ml DMF, then added 0.5g NaH stirring at room temperature. After 15min ,the mixture was filtered to get colatuie in which we added 4ml GTMS(KH560) at 90°C under the protection of nitrogen. After 5h, 50ml DMF, 1g magnetic sillica microspheres and 1.5ml ammonia (25%) was added one by one stirring for 12h fiercely. The product was separated by magnet and washed with ethanol and water, then vacuum desiccated at 60°Cfor 24 h. Scheme S1. The synthesis of sensor Fluorescein-Ad moiety S3

Scheme S2. The preparation of $Fe_3O_4@SiO_2-\beta-CD$

Fig.S1. The SEM and TEM images (a, b) of FFIC MNPs

Fig.S2a. The magnetic hysteresis loops of Fe₃O₄ (black line), FFIC MNPs (red line)

Fig.S3a. 1H NMR spectrum of organic molecule fluorophore moiety in DMSO-d6

Fig.S3b. 1C NMR spectrum of organic molecule fluorophore moiety in DMSO-d6

Fig.S4. X-ray powder diffraction pattern analysis

Fig.S5. Photograph of FFIC MNPs in the presence of various metal ions (5.0×10⁻⁴ M except Zn²⁺

that is 1.0×10⁻⁵ M) in CH₃CN-H₂O (1:4, v/v, pH=7.10)

Fig.S6. The different pH, 0.1g/L FFIC MNPs, 2.5×10^{-6} mol/L Zn²⁺, excitation was at 390 nm, emission was monitored at 485 nm. Slit 2.50×5.00mm

Fig.S7. From left to right was FFIC MNPs (CH₃CN-H₂O, 1: 4, and v/v, buffered at pH=7.1 with Tris-

HCl) with no Zn^{2+} , 0.25 μ mol/L, 2.5 μ mol/L, 25 μ mol/L.

Fig.S8. The different volume proportion of CH_3CN and water, 0.1g/L FFIC MNPs, 5×10^{-6} mol/L Zn^{2+} in 4ml, excitation was at 390 nm, emission was monitored at 485 nm. Slit 2.50×5.00mm

Fig.S9. S3 and Zn²⁺ in CH₃CN-H₂O (1/4, v/v), conditions:[**S3** + Zn²⁺] = 2.5×10^{-5} mol/L, excitation was at 390 nm, emission was monitored at 485nm.

Fig.S10. Time course of fluorescence intensity of FFIC MNPs (0.1 g/L), the concentration of Zn^{2+} 2.5×10⁻⁷ (CH³CN–H²O, 1:4, v/v) buffered at pH=7.1 with tris-HCl(0.1M), excitation was at 390 nm, emission was monitored at 485nm)

Fig.S11.The equilibrium adsorption amounts

Fig.S12.The Langmuir curve

Fig.S1

Fig.S2a

Fig.S3a

Fig.S3b

Fig.S5

Fig.S6

Fig.S7

Fig.S9

Fig.S10

Fig.S11

Scheme S1

Scheme S2

