Supplementary Information

Temperature-dependent selectivity of bead-like TeO₂

nanostructured gas sensors

Sun-Woo Choi^a, and Changhyun Jin^{*b}

^aSensor System Research Center, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul 136-791, Republic of Korea. ^bSchool of Mechanical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea.

* Corresponding author: *E-mail address: jinch@konkuk.ac.kr; Fax:* +82 2 450 3482; Tel: +82 2 447 5886

Materials	Gas species	Concentration (ppm)	Temperature (°C)	Response (R_a/R_g or R_g/R_a)	Reference
TeO ₂ nanowires	C ₂ H ₅ OH	200	250	7.45	This work
hollow Co ₃ O ₄ nanospheres	C ₂ H ₅ OH	1000	100	6.3	1
Single CuO nanowire	C ₂ H ₅ OH	500	200	1.6	2
Hollow NiO hemispheres	C ₂ H ₅ OH	200	300	5	3
Porous Co ₃ O ₄ nanorods	C ₂ H ₅ OH	20552	300	1036 % (ΔR/R ₀)×100	4
NiO nanowires	C ₂ H ₅ OH	1000	R.T.	7 % (ΔG/G ₀)×100	5

Table S1. Comparison of sensing properties of p-TeO₂ NWs' with those of p-type nanostructured materials-based sensors.

References

- 1. J. Park, X. Shen, G. Wang, Sens. Actuators B, 2009, 136, 494-498.
- L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, T. Yu, *Nanotechnology*, 2009, 20, 085203.
- N. G. Cho, I.-S. Hwang, H.-G. Kim, J.-H. Lee, I-D. Kim, Sens. Actuators B, 2011, 155, 366-371.
- 4. H. Nguyen, S. A. El-Safty, J. Phys. Chem. C, 2011, 115, 8466-8474.
- J. Wang, L. Wei, L. Zhang, C. Jiang, E. S.-W. Kong, Y. Zhang, J. Mater. Chem., 2012, 22, 8327-8335.

Fig. S1 Response curves of p-TeO₂ NWs for C_2H_5OH , H_2S , and NO_2 at room temperature.

Fig. S2 Response to the gas flow rate of (a) C_2H_5OH , (b) NO_2 , and (c) H_2S at 250, 350, and 400 °C, respectively.