		Bragg			Average diameter /
	hkl	Angle 2θ/°	Peak Width 'β'/°	Diameter/nm	nm
ZrO ₂	111	30.27	1.118	7	
	200	35.14	0.893	9	8
	220	50.50	1.445	6	
TiO ₂	101	25.29	0.274	30	
	200	48.03	0.317	27	28
	211	55.06	0.335	27	
ZrO ₂ - TiO ₂ composite	101	24.99	0.440	19	16
	111	30.89	0.623	13	

Table 1: Shows the calculated crystallite size in the ZrO_2 , TiO_2 and $ZrO_2 - TiO_2$ composite films grown via AACVD.

Figure 1: The survey scan for the $ZrO_2 - TiO_2$ film grown via AACVD. The surface of the film was free of all contaminants other than Si (from silicon grease).

Figure 2: The O 1s XPS spectrum for the $ZrO - TiO_2$ composite film. The raw data was deconvoluted to give two oxygen environments corresponding to O bound to Zr or Ti as well as chemisorbed oxygen.

Figure 3: Above) the Tauc plot for the anatase TiO₂ film. Below) linear regression applied to the steepest part of the Tauc plot shows an indirect bandgap of 3.2 eV.

Figure 4: Above) the Tauc plot for the composite $ZrO_2 - TiO_2$ film. Below) linear regression applied to the steepest part of the Tauc plot shows an indirect bandgap of 3.3 eV - corresponding to the anatase phase of the film.

Figure 5: The water contact angle measurements pre and post irradiation with UVA radiation (flux= 3.67×10^{14} photons per cm² per s) for 16 hours. Pre irradiation a) ZrO_2 , TiO_2 and $ZrO_2 - TiO_2$ composite. Post irradiation d) ZrO_2 e) TiO_2 and f) $ZrO_2 - TiO_2$ composite.