Highly responsive glutathione functionalized green AuNP probe for precise colorimetric detection of Cd²⁺ contamination in the environment

Rajarathinam Manjumeena,*a Dhanapal Duraibabu^b, Thangavelu Rajamuthuramalingam^c,

Ramasamy Venkatesan^d and Puthupalayam Thangavelu Kalaichelvan^a

^aCAS in Botany, University of Madras, Guindy Campus, Chennai- 600 025, India

^bDepartment of Chemistry, Anna University, Chennai- 600 025, India

^cDepartment of Biotechnology, University of Madras, Guindy Campus, 600 025, India

^dNational Institute of Ocean Technology, Chennai- 600100, India

*manjumeena1989@gmail.com

Fig. S1. (a) Photograph of Ranipet industrial area (b) Photograph of residential

area in the vicinity.

Fig. S2. EDAX spectrum of AuNPs.

Fig. S3. (a) (b) HRTEM micrographs of the chemically synthesized AuNPs (c) UV-Vis absorption spectra of chemically synthesized AuNps (control) before and after

functionalization with GSH

Fig. S4. (a) UV- Vis absorption spectra of chemically synthesized AuNPs- GSH (control) and
 (b) the corresponding color change photo images of chemically synthesized
 AuNPs- GSH added with different metal ions showing selectivity/interference

Colorimetric	Route of Synthesis	Surface	Analytical	References
Nanosensor		Functionalization	Detection	
Employed				
AuNPs	Citrate reduction of	GSH	Cd^{2+}	43
	HAuCl ₄			
AuNPs	citrate reduction of	6-mercaptonicotinic	Cd^{2+}	44
	HAuCl ₄	acid (MNA) and L-		
		Cysteine (LCys)		
Fluorescent gold	Chemical synthesis using	GSH	Pb ²⁺	45
nanodots	tetrakis(hydroxymethyl)			
	phosphonium chloride			
	(THPC) and HAuCl ₄			
Fluorescent	Encapsulation in bio-	GSH	Cu ²⁺	46
AuNPs	compatible poly-			
	(amidoamine)			
AuNPs	Citrate reduction of	-	melamine	47
	HAuCl ₄			
AuNPs	Citrate reduction of	-	organophosphor	48
	HAuCl ₄		us pesticides -	
			mathamidophos	
AuNPs	Citrate reduction of	azide-terminal	Organophosphat	49
	HAuCl ₄	alkyne	e pesticide-	
		functionalization	Paraoxon	
AuNPs	Citrate reduction of	Papain	Hg^{2+} , Pb^{2+} and	50
	HAuCl ₄		Cu^{2+}	
AuNPs	Citrate reduction of	2-mercapto-5-(3-	Cd^{2+}	51
	HAuCl ₄	nitrophenyl)-1,3,4-		
		thiadiazole]		

 Table S1 Synoptic table of Au-based colorimetric sensor for heavy metal and other analyte detection

AuNPs	Citrate reduction of	Alkane Thiol-	Glucose oxidase	52
	HAuCl ₄	Tween 20, 16-		
		mercaptohexadecano		
		ic acid		
AuNPs	Citrate reduction of	11-	Pb ²⁺ , Cd ²⁺ , Hg ²⁺	53
	HAuCl ₄	mercaptoundecanoic		
		acid		
AuNPs	Citrate reduction of	mercaptopropionic	Hg^{2+}	54
	HAuCl ₄	acid (MPA) and		
		homocystine		
AuNPs	Citrate reduction of	Chitosan	Zn^{2+} and Cu^{2+}	55
	HAuCl ₄			
AuNPs	Citrate reduction of	DNA-	Hg^{2+}	56
	HAuCl ₄	oligonucleotides		
AuNPs	Citrate reduction of	Dithiocarbamate	Hg^{2+}	57
	HAuCl ₄	derivative of		
		calixarene		
AuNPs	Gallic acid mediated	-	Pb^{2+}	58
	reduction of HAuCl ₄			
Gold nanorods	N-cetyl	GSH	Pb^{2+}	59
	trimethylammonium			
	bromide mediated			
	reduction of HAuCl ₄			
Fluorescent gold	Bovine serum albumin	-	Hg^{2+}	60
nanoclusters	mediated reduction of			
incorporated into	HAuCl ₄			
electrospun				
polyvinyl alcohol				
nanofibers				
AuNPs	Citrate reduction of	GSH	Pb^{2+}	61
	HAuCl ₄			

Table S2 Quantification of metal ions in sample 1 and 2 by atomic absorption spectroscopy	
--	--

S.No	Transitions metals	Sample 1 (µg/L)	Sample 2 (µg/L)
1	Cr ³⁺	32.5±0.25	24.0±0.22
2	Ni ²⁺	23.8±0.95	11.2 ± 0.30
3	Mn^{2+}	23.0±0.20	11.9 ± 0.41
4	Cu^{2+}	32.0±0.42	31.1±0.60
5	Hg^{2+}	43.0±0.95	30.9±0.87
6	Co^{2+}	37.5 ± 0.40	31.2±0.25
7	Cd^{2+}	33.6±0.48	25.1±0.50
8	Fe ²⁺	25.0±0.98	21.5±0.45
Alkaline earth metals			
9	Mg^{2+}	21.0±0.25	18.5±0.57
10	Ca^{2+}	39.8±0.47	31.0±0.63
11	Ba^{2+}	20.1±0.85	19.5±0.49