Photophysical properties of quinoxaline-fused

[7] carbohelicene derivatives

Chunyu Liu,^a Yanling Si,^b Xiumei Pan^{a,*} and Guochun Yang^{a,*}

- a. Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024 Jilin, China.
 E-mail:yanggc468@nenu.edu.cn
- b. College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118 Jilin, China

Contents

1. The main concerned bond length for compound 4 between experiment and
calculation. S3
2. Computed absorption wavelengths (nm) using the B3LYP functional at the
different basis sets level for compound 2. S4
3. Calculated UV-Vis (left) and CD (right) spectra of compound 2 using six different
DFT functionals. S5
4. Computed HOMO and LUMO energy level and corresponding energy gaps
(Eg=LUMO-HOMO) in eV using different functionals at 6-31+G(d) basis set level
for compound 2 . S6
5. The calculated excitation energies, oscillator strengths and rotational strengths for
compound 2 in the gas phase at the TDB3LYP/ $6-31+G(d)$ level. S7
6. Computed absorption wavelengths (λ in nm), oscillator strengths (f), and major
contribution for the studied compounds 1, 3, 4, 5 and 6. \$9
7. Calculated UV-Vis (left) and CD (right) spectra in solution phases(THF) of 1 and 3
at the TDB3LYP/6-31+G(d) level of theory along with gas phases UV-Vis and CD
(red dash line). S10
8. Molecular orbital isosurfaces involved in the main electron transitions of
compounds $1, 3, 4$ and 6 at the TDB3LYP/6-31+G(d) level of theory. S11
9. Computed HOMO and LUMO energy level and corresponding energy gaps (Eg) in
eV at the TDB3LYP/6-31G(d,p) level for compounds 1-6 . S13
10. Molecular orbitals involved into the main CD transition of compounds 1-4 . S14
11. Calculated band structure of the crystal for compound 4 in its racemate (top) and
enantiomer crystals (bottom). S16

2

Table S1. The main concerned bond length for compound 4 between experiment and calculation.

Bond	B3LYP	Experiment	Difference
1	1.407	1.405	0.002
2	1.382	1.379	0.003
3	1.479	1.479	0.000
4	1.439	1.438	0.001
5	1.330	1.333	-0.003
6	1.352	1.355	-0.003
7	1.383	1.369	0.014
8	1.397	1.377	0.020
9	1.365	1.370	0.005

Note: the difference is equal to calculation value minus experimental value

Basis set	Band 1	Band 2	Band 3	Band 4
6-31G(d)	278.90	313.25	341.40	419.99
6-31+G(d)	282.49	316.45	346.13	424.85
6-31++G(d,p)	282.74	316.54	346.24	424.78
6-311++G(d,p)	283.80	317.94	348.20	426.72
6-311++G(2d,2p)	284.42	318.48	349.18	427.27
exp	276	332	366	427

Table S2. Computed absorption wavelengths (nm) using the B3LYP functional at thedifferent basis sets level for compound 2 along with the experimental values.

Figure S1. Calculated UV-Vis (left) and CD (right) spectra of compound **2** using six different DFT functionals along with the experimental spectra.

Table S3. Computed HOMO and LUMO energy level and corresponding energy gaps (Eg=LUMO-HOMO) in eV using different functionals at 6-31+G(d) basis set level for compound **2**.

Functional	HUMO	LUMO	Eg
B3LYP	-5.757	-2.574	3.183
PBE0	-5.961	-2.480	3.481
B3PW91	-5.819	-2.628	3.191
M06-2X	-6.896	-1.835	5.061
BH&HLYP	-6.537	-1.603	4.934
LC-BLYP	-8.226	-0.481	7.745

states	eV	λ^{a}	f^{b}	Rlength ^c	Rvelocity ^c
1	2.6440	468.92	0.0224	5.5739	5.1048
2	2.8851	429.74	0.0112	-46.2693	-45.2348
3	2.9183	424.85	0.1891	57.2984	54.9835
4	3.2810	377.88	0.0005	-0.0633	-0.2286
5	3.2991	375.81	0.0674	-308.9714	-309.9281
6	3.3071	374.90	0.0693	53.0994	52.4732
7	3.3946	365.23	0.0832	-3.5566	-3.5030
8	3.4951	354.74	0.0076	-126.4121	-124.9949
9	3.5685	347.44	0.0692	-191.9522	-191.1530
10	3.5820	346.13	0.2068	211.4651	205.9730
11	3.6540	339.31	0.0080	-46.5211	-43.4195
12	3.6855	336.41	0.0844	-28.7331	-28.0954
13	3.9180	316.45	0.2195	59.3692	57.4197
14	4.0151	308.79	0.0742	78.5611	75.1716
15	4.0341	307.34	0.0435	57.8225	57.9084
16	4.0579	305.54	0.0247	-15.2280	-15.2438
17	4.1594	298.08	0.0038	-10.5911	-9.6629
18	4.1642	297.74	0.0044	10.5572	10.8161
19	4.2477	291.88	0.0157	-22.4081	-22.3610
20	4.2734	290.13	0.0164	-78.0292	-77.1421
21	4.3173	287.18	0.0047	-1.8169	-2.0775
22	4.3442	285.40	0.0326	-136.8769	-133.1782
23	4.3890	282.49	0.7815	259.6704	254.5679
24	4.4281	280.00	0.0078	4.4532	4.0056
25	4.4535	278.40	0.3126	298.5076	292.8781
26	4.4936	275.91	0.0988	-119.4684	-112.3997
27	4.5204	274.28	0.0349	30.4146	30.5501
28	4.5659	271.54	0.3065	229.5874	220.4800
29	4.5846	270.44	0.0369	-9.2351	-8.3509
30	4.7298	262.14	0.0010	-18.0344	-19.9286
31	4.7745	259.68	0.0095	-46.7129	-43.8157
32	4.7990	258.35	0.0031	42.5221	38.4494
33	4.8537	255.44	0.0023	44.1085	44.8482
34	4.8836	253.88	0.0291	4.2786	4.0528
35	4.8861	253.75	0.0209	-5.1898	-4.4951
36	4.9057	252.73	0.0026	31.8721	31.3515
37	4.9553	250.20	0.0466	-14.3257	-13.2494
38	4.9798	248.97	0.0055	-12.4077	-12.0278
39	4.9947	248.23	0.0012	-15.4280	-12.0929

Table S4. The calculated excitation energies, oscillator strengths and rotational strengths for compound **2** in the gas phase at the TDB3LYP/ 6-31+G(d) level.

40	5.0903	243.57	0.0200	-110.1612	-106.9509
41	5.1060	242.82	0.0107	-3.9865	-4.1217
42	5.1659	240.00	0.0041	6.5592	6.3127
43	5.1684	239.89	0.0309	-42.0964	-39.9093
44	5.2035	238.27	0.0006	1.7824	1.9336
45	5.2075	238.09	0.0000	-0.1136	-0.0247
46	5.2152	237.73	0.0007	6.3266	4.7656
47	5.2533	236.01	0.0130	31.0118	31.8413
48	5.2641	235.53	0.0003	0.7014	1.2800
49	5.3123	233.39	0.0138	-16.7621	-16.5259
50	5.3147	233.28	0.0012	1.9467	1.7718
51	5.3380	232.27	0.0001	3.3390	3.8701
52	5.3414	232.12	0.0220	-25.3855	-23.4324
53	5.3547	231.54	0.0506	4.6474	4.4342
54	5.3696	230.90	0.0169	39.5927	38.1616
55	5.3933	229.88	0.0010	4.0598	3.9349
56	5.4053	229.37	0.0129	-18.3724	-16.9195
57	5.4072	229.30	0.0052	-22.3822	-21.8288
58	5.4309	228.29	0.0107	-24.7518	-24.4644
59	5.4401	227.91	0.0169	2.4085	2.4843
60	5.4525	227.39	0.1216	-107.9398	-105.0485

^aλ in nm. ^b Oscillator Strengths. ^c R values (in 10⁻⁴⁰ esu²cm²) using the velocity-gauge

representation and length-gauge representation of the electric dipole operator.

Table S5. Computed absorption wavelengths (λ in nm) as compared to experimental data (in parentheses), oscillator strengths (*f*), and major contribution for the studied compounds **1**, **3**, **4**, **5** and **6**.

Compound	λ	f	Major contribution
1	273.82(272)	0.509	HOMO-1→LUMO+3 (44%)
1			HOMO-3→LUMO (13%)
	311.91(303)	0.015	HOMO-3→LUMO+1 (55%)
			HOMO-1→LUMO+2 (42%)
	374.34(373)	0.104	HOMO→LUMO+1 (59%)
			HOMO-1→LUMO (25%)
3	272.71(283)	0.366	HOMO-2→LUMO+5 (32%)
U			HOMO-12→LUMO (19%)
	301.46(335)	0.128	HOMO-1→LUMO+3 (44%)
			HOMO \rightarrow LUMO+5 (15%)
	349.57(378)	0.640	HOMO-2→LUMO+1 (39%)
			HOMO→LUMO+1 (29%)
	438.13(445)	0.416	HOMO-1→LUMO (88%)
			HOMO→LUMO+1 (9%)
	276.15(286)	0.064	HOMO-12→LUMO (33%)
4			HOMO-8→LUMO+1 (14%)
	308.78(333)	0.251	HOMO-8→LUMO (51%)
			HOMO-4→LUMO+2 (16%)
	352.72(383)	0.573	HOMO→LUMO+2 (51%)
			HOMO-1→LUMO+1 (22%)
	449.65(450)	0.571	HOMO-1→LUMO (93%)
	287.72	0.478	HOMO-1→LUMO+5 (48%)
5			HOMO-2→LUMO+4 (15%)
	312.87	0.302	HOMO-8→LUMO (34%)
			HOMO→LUMO+3 (31%)
	359.21	0.579	HOMO-1→LUMO+2 (52%)
			HOMO→LUMO+1 (17%)
	476.34	0.533	HOMO→LUMO (96%)
6	285.74	0.408	HOMO→LUMO+7 (46%)
0			HOMO-1→LUMO+5 (12%)
	348.46	0.498	HOMO-2→LUMO+3 (57%)
			HOMO→LUMO+3 (14%)
	456.00	0.412	HOMO→LUMO+1 (64%)
			HOMO-1→LUMO (34%)

Figure S2. Calculated UV-Vis (left) and CD (right) spectra in solution phases(THF) of **1** and **3** at the TDB3LYP/6-31+G(d) level of theory along with gas phases UV-Vis and CD (red dash line).

Figure S3. Molecular orbital isosurfaces involved in the main electron transitions of compounds 1, 3, 4 and 6 at the TDB3LYP/6-31+G(d) level of theory.

Table S6. Computed HOMO and LUMO energy level and corresponding energy gaps

Compound	НОМО	LUMO	Eg
1	-5.371	-1.508	3.863
2	-5.484	-2.272	3.212
3	-5.454	-2.295	3.159
4	-5.377	-2.198	3.179
5	-5.114	-2.099	3.015
6	-5.767	-2.844	2.923

(*E*g=LUMO-HOMO) in eV at the TDB3LYP/6-31G(d,p) level for compounds **1-6**.

Figure S4. Molecular orbitals involved into the main CD transition of compounds 1-4.

Figure S5. Calculated band structure of the crystal for compound **4** in its racemate (top) and enantiomer crystals (bottom). The high symmetry points in racemate are $\Gamma = (0, 0, 0), Y = (0, 0.5, 0), A = (-0.5, 0.5, 0.5), B = (-0.5, 0, 0), D = (-0.5, 0, 0.5), E = (-0.5, 0.5, 0.5) and X= (0, 0.5, 0.5). The high symmetry points in racemate are Z = (0, 0, 0.5), <math>\Gamma = (0, 0, 0), Y = (0, 0.5, 0), A = (-0.5, 0.5, 0.5), B = (-0.5, 0, 0), D = (-0.5, 0, 0), D = (-0.5, 0, 0), D = (-0.5, 0, 0), C = (-0.5, 0.5, 0.5), C = (-0.5, 0.5)$