Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

# **Supporting Information**

# for

# Palladacycles Derived from Arylphosphinamides for Mild

# Suzuki-Miyaura Cross-Couplings

Guo-Jie Wu,<sup>a,b</sup> Fu-She Han<sup>a,c</sup>\* and Yu-Long Zhao<sup>b</sup>\*

<sup>a</sup> Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China)

<sup>b</sup> Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)

<sup>c</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

# Contents

| General information          |     |
|------------------------------|-----|
| Experimental procedures      | S2  |
| Product characterization     | S2  |
| References                   | S15 |
| Spectra of coupling products | S16 |

# **General Information**

Unless otherwise stated, all starting materials were obtained from commercial supplies and used as received. Palladacyclic complex **3** were synthesized following the reported procedure.<sup>[1]</sup> The <sup>1</sup>H NMR spectra were recorded at 300, 400 MHz in CDCl<sub>3</sub> and the <sup>13</sup>C NMR spectra were recorded at 101 MHz in CDCl<sub>3</sub> or DMSO-d<sub>6</sub> with TMS as internal standard. All shifts are given in ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Column chromatography was performed on silica gel with 100–200 mesh.

### **Experimental procedures**

#### General procedure for cross-coupling under nitrogen atmosphere:

To a Schlenk tube equipped with a magnetic bar was charged solid aryl bromide or triflate (0.5 mmol), boronic acid (0.75 mmol), **3a** (1.0 mol%), anhydrous K<sub>3</sub>PO<sub>4</sub> (1.5 mmol). The tube was then evacuated under vacuum and backfilled with N<sub>2</sub>. EtOH (3.0 mL) was injected *via* syringe (the aryl bromide or triflate (0.5 mmol)) was also added at this stage if it is liquid). The reaction mixture was stirred at rt or 50 °C until the arylbromide or triflate had disappeared as monitored by TLC. The reaction mixture was poured into water (30 mL) and then extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL × 3). The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated to dryness. The crude material was purified by flash chromatography on silica gel using a mixture of hexane and CH<sub>2</sub>Cl<sub>2</sub> as eluents to give the desired cross-coupled products.

#### General procedure for cross-coupling under air atmosphere:

To a Schlenk tube equipped with a magnetic bar was charged solid aryl bromide or triflate (0.5 mmol), boronic acid (0.75 mmol), **3a** (1.0 mol%), anhydrous K<sub>3</sub>PO<sub>4</sub> (1.5 mmol). EtOH (3.0 mL) was injected *via* syringe and the tube was sealed with a screw cap. The reaction mixture was stirred at rt until the arylbromide or triflate had disappeared as monitored by TLC. The reaction mixture was poured into water (30 mL) and then extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL  $\times$  3). The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated to dryness. The crude material was purified by flash chromatography on silica gel using a mixture of hexane and CH<sub>2</sub>Cl<sub>2</sub> as eluents to give the desired cross-coupled products.

#### **Product characterization**

#### 4-methoxy-4'-methyl-1,1'-biphenyl (7a)<sup>[2]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (d, *J* = 9.0 Hz, 2H), 7.47 (d, *J* = 9.0 Hz, 2H), 7.25 (d, *J* = 9.0 Hz, 2H), 6.99 (d, *J* = 9.0 Hz, 2H), 3.87 (s, 3H), 2.40 (s, 3H).

4-(*tert*-butyl)-4'-methyl-1,1'-biphenyl (7b)<sup>[3,4]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.57–7.44 (m, 6H), 7.27–7.23 (m, 2H), 2.41 (s, 3H), 1.38 (s, 9H).

#### **2,4'-dimethyl-1,1'-biphenyl** (7c)<sup>[5]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.30–7.22 (m, 8H), 2.43 (s, 3H), 2.30 (s, 3H).

# 4'-methyl-[1,1'-biphenyl]-4-carbonitrile (7d)<sup>[4]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.75–7.66 (m, 4H), 7.52 (d, *J* = 9.0 Hz, 2H), 7.31 (d, *J* = 9.0 Hz, 2H), 2.43 (s, 3H).

4-(*tert*-butyl)-4'-methoxy-1,1'-biphenyl (7e)<sup>[3]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.57–7.44 (m, 6H), 7.01–6.96 (m, 2H), 3.87 (s, 3H), 1.38 (s, 9H).

# **4'-methoxy-2-methyl-1,1'-biphenyl** (**7f**)<sup>[6,7]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.33–7.25 (m, 6H), 7.03–6.96 (m, 2H), 3.89 (s, 3H), 2.32 (s, 3H).

4'-methoxy-[1,1'-biphenyl]-4-carbonitrile (7g)<sup>[8]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.74–7.63 (m, 4H), 7.58–7.53 (m, 2H), 7.06–6.99 (m, 2H), 3.89 (s, 3H).

methyl 4'-methoxy-[1,1'-biphenyl]-4-carboxylate (7h)<sup>[2,8,9]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, *J* = 9.0 Hz, 2H), 7.65–7.59 (m, 4H), 7.02 (d, *J* = 9.0 Hz, 2H), 3.95 (s, 3H), 3.88 (s, 3H).

methyl 4'-(tert-butyl)-[1,1'-biphenyl]-4-carboxylate (7i)<sup>[10]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, *J* = 9.0 Hz, 2H), 7.68 (d, *J* = 9.0 Hz, 2H), 7.60 (d, *J* = 9.0 Hz, 2H), 7.52 (d, *J* = 9.0 Hz, 2H), 3.96 (s, 3H), 1.39 (s, 9H).

methyl 2'-methyl-[1,1'-biphenyl]-4-carboxylate (7j)<sup>[8]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, *J* = 9.0 Hz, 2H), 7.37 (d, *J* = 9.0 Hz, 2H), 7.27–7.18 (m, 4H), 3.92 (s, 3H), 2.24 (s, 3H).

methyl 4'-cyano-[1,1'-biphenyl]-4-carboxylate (7k)<sup>[8,9]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (d, J = 9.0 Hz, 2H), 7.81–7.71 (m, 4H), 7.68 (d, J

= 9.0 Hz, 2H), 3.97 (s, 3H).

# **4-chloro-4'-methoxy-1,1'-biphenyl** (7l)<sup>[11]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.54–7.46 (m, 4H), 7.43–7.36 (m, 2H), 7.02–6.96 (m, 2H), 3.87 (s, 3H).

#### 4-(tert-butyl)-4'-chloro-1,1'-biphenyl (7m)



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.56–7.45 (m, 6H), 7.43–7.37 (m, 2H), 1.38 (s, 9H). <sup>1</sup>H NMR (300 MHz, CDCl3) δ 7.56–7.45 (m, 6H), 7.43–7.37 (m, 2H), 1.38 (s, 9H). <sup>13</sup>C NMR (101 MHz, CDCl3) δ 150.6, 139.4, 136.9, 132.9, 128.7, 128.1, 126.5, 125.7, 34.5, 31.2.

### 4'-chloro-[1,1'-biphenyl]-4-carbonitrile (7n)<sup>[9]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.78–7.64 (m, 4H), 7.57–7.45 (m, 4H).

# 2-(4-methoxyphenyl)naphthalene (70)<sup>[2,4,6,7]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.94–7.84 (m, 3H), 7.78–7.65 (m, 3H), 7.55–7.45 (m, 2H), 7.05 (d, *J* = 9.0 Hz, 2H), 3.90 (s, 3H).

#### 2-(4-(tert-butyl)phenyl)naphthalene (7p)<sup>[3]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.06 (s, 1H), 7.95–7.85 (m, 3H), 7.80–7.75 (m, 1H), 7.70 (d, *J* = 9.0 Hz, 2H), 7.57–7.46 (m, 4H), 1.41 (s, 9H).

2-(o-tolyl)naphthalene (7q)<sup>[2,6]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.91–7.84 (m, 3H), 7.77 (s, 1H), 7.53–7.45 (m, 3H), 7.35–7.25 (m, 4H), 2.31 (s, 3H).

# 4-(naphthalen-2-yl)benzonitrile (7r)<sup>[12]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.08 (s, 1H), 8.00–7.70 (m, 8H), 7.60–7.54 (m, 2H).

# **4'-methoxy-2,6-dimethyl-1,1'-biphenyl** (7s)<sup>[7]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.18–7.05 (m, 5H), 6.98 (d, *J* = 6 Hz, 2H), 3.88 (s, 3H), 2.06 (s, 6H).

4'-(tert-butyl)-2,6-dimethyl-1,1'-biphenyl (7t)<sup>[13]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.46–7.41 (m, 2H), 7.21–7.05 (m, 5H), 2.06 (s, 6H), 1.39 (s, 9H).

methyl 4-(naphthalen-2-yl)benzoate  $(7u)^{[6]}$ 



<sup>1</sup>H NMR (300 MHz, CDCl3) δ 8.20-8.09 (m, 3H), 7.99-7.87 (m, 3H), 7.85-7.76 (m,

3H), 7.59–7.50 (m, 2H), 3.98 (s, 3H).

4-methoxy-1,1':4',1''-terphenyl (7v)<sup>[2,7]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl3) δ 7.70–7.57 (m, 8H), 7.52–7.44 (m, 2H), 7.41–7.34 (m, 1H), 7.02 (d, *J* = 6.0 Hz, 2H), 3.89 (s, 3 H).

methyl [1,1':4',1''-terphenyl]-4-carboxylate (7w)<sup>[14]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl3)  $\delta$  8.15 (d, J = 9.0 Hz, 2H), 7.77–7.64 (m, 8H), 7.54–7.45 (m, 2H), 7.45–7.36 (m, 1H), 3.97 (s, 3H).

\4-fluoro-4'-methoxy-1,1'-biphenyl (7x)<sup>[2,6,11]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl3)  $\delta$  7.55–7.46 (m, 4H), 7.16–7.06 (m, 2H), 7.00 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H).

methyl 4'-fluoro-[1,1'-biphenyl]-4-carboxylate (7y)<sup>[2]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.14–8.10 (m, 2H), 7.65–7.58 (m, 4H), 7.21–7.13 (m, 2H), 3.96 (s, 3H).

4'-methoxy-[1,1'-biphenyl]-4-carbaldehyde (7z)<sup>[15]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  10.06 (s, 1H), 7.95 (d, *J* = 9.0 Hz, 2H), 7.74 (d, *J* = 9.0 Hz, 2H), 7.62 (d, *J* = 9.0 Hz, 2H), 7.04 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H).

1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethanone (7aa)<sup>[2]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (d, *J* = 9.0 Hz, 2H), 7.67 (d, *J* = 9.0 Hz, 2H), 7.61 (d, *J* = 9.0 Hz, 2H), 7.03 (d, *J* = 9.0 Hz, 2H), 3.89 (s, 3H), 2.65 (s, 3H).

### methyl 4'-acetyl-[1,1'-biphenyl]-4-carboxylate (7ab)<sup>[9]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, *J* = 6.0 Hz, 2H), 8.06 (d, *J* = 6.0 Hz, 2H), 7.71 (t, *J* = 6.0 Hz, 4H), 3.95 (s, 3H), 2.65 (s, 3H).

### 3,5-difluoro-4'-methoxy-1,1'-biphenyl (10a)<sup>[16]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (d, J = 9.0 Hz, 2H), 7.13–6.96 (m, 4H), 6.80–6.69 (m, 1H), 3.87 (s, 3H).

# **3,4,5-trifluoro-4'-methoxy-1,1'-biphenyl** (10b)<sup>[17]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (d, J = 9.0 Hz, 2H), 7.20–7.09 (m, 2H), 7.00 (d, J = 9.0 Hz, 2H), 3.87 (s, 3H).

methyl 3',5'-difluoro-[1,1'-biphenyl]-4-carboxylate (10c)



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, J = 9.0 Hz, 2H), 7.64 (d, J = 9.0 Hz, 2H), 7.20–7.10 (m, 2H), 6.90-6.80 (m, 1H), 3.97 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.6, 163.4 (dd, J = 13.1, 249.5 Hz), 143.3 (t, J = 10.1 Hz), 143.1, 130.3, 130.1, 127.0, 110.2 (dd, J = 7.1, 19.2 Hz), 103.35 (t, J = 25.3 Hz), 52.2.

methyl 3',4',5'-trifluoro-[1,1'-biphenyl]-4-carboxylate (10d)



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 9.0 Hz, 2H), 7.29–7.20 (m, 2H), 3.97 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.5, 151.5 (dd, J = 4.0, 9.1, 252.5 Hz), 142.4, 139.8 (td, J = 15.2, 254.5 hz), 136.1, 130.3, 130.1, 126.8, 111.3 (dd, J = 6.1, 16.2 Hz), 52.2.

#### 2-(3,5-difluorophenyl)naphthalene (10e)



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07–7.86 (m, 4H), 7.74–7.65 (m, 1H), 7.60–7.50 (m, 2H), 7.29–7.20 (m,2H), 6.88–6.77 (m, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  162.9 (dd, J = 14.1, 249.5 Hz), 144.0 (t, J = 10.1 Hz), 135.7, 133.0, 132.7, 128.4, 127.9, 127.2, 126.2, 126.1, 125.7, 124.4, 109.7 (dd, J = 7.1, 18.2 Hz), 102.1 (t, J = 25.3 Hz).

#### 2-(3,4,5-trifluorophenyl)naphthalene (10f)



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.00–7.86 (m, 4H), 7.67–7.51 (m, 3H), 7.39–7.30 (m, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.0 (ddd, *J* = 4.0, 10.1, 251.5 Hz), 138.8 (td, *J* = 15.2, 253.5 Hz), 136.8, 135.0, 133.0, 132.5, 128.5, 127.8, 127.2, 126.3, 126.2, 125.5, 124.1, 110.8 (dd, *J* = 6.1, 17.2 Hz).

#### 2-(4-methoxyphenyl)benzofuran (11a)<sup>[18]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 6.0 Hz, 2H), 7.54–7.45 (m, 2H), 7.26–7.15 (m, 2H), 6.95 (d, J = 6.0 Hz, 2H), 6.86 (s, 1H), 3.83 (s, 3H).

### methyl 4-(benzofuran-2-yl)benzoate (11b)<sup>[19]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, J = 9.0 Hz, 2H), 7.95 (d, J = 9.0 Hz, 2H), 7.66–7.53 (m, 2H), 7.38–7.25 (m, 2H), 7.18 (s, 1H), 3.96 (s, 3H).

### ethyl 4-(benzo[b]thiophen-2-yl)benzoate (11c)<sup>[20]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, *J* = 9.0 Hz, 2H), 7.89–7.76 (m, 4H), 7.68 (s, 1H), 7.43–7.33 (m, 2H), 4.43 (q, *J* = 6.0 Hz, 2H), 1.44 (t, *J* = 6.0 Hz, 3H).

4-(benzofuran-2-yl)benzaldehyde (11d)<sup>[21]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  10.06 (s, 1H), 8.05 (d, *J* = 9.0 Hz, 2H), 7.98 (d, *J* = 9.0 Hz, 2H), 7.68–7.55 (m, 2H), 7.40–7.25 (m, 2H), 7.23 (s, 1H).

4-(benzo[b]thiophen-2-yl)benzaldehyde (11e)<sup>[22]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 10.06 (s, 1H), 7.98–7.82 (m, 6H), 7.73 (s, 1H), 7.44–7.35 (m, 2H).

### 2-(4-nitrophenyl)benzofuran (11f)<sup>[18]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.34 (d, J = 9.0 Hz, 2H), 8.03 (d, J = 9.0 Hz, 2H), 7.70–7.55 (m, 2H), 7.43–7.25 (m, 3H).

# 2-(4-nitrophenyl)benzo[b]thiophene (11g)<sup>[23]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.32 (d, *J* = 9.0 Hz, 2H), 7.91–7.83 (m, 4H), 7.74 (s, 1H), 7.46–7.37 (m, 2H).

### 2-(naphthalen-2-yl)benzofuran (11h)<sup>[6,24]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.40 (s, 1H), 7.98–7.85 (m, 4H), 7.66–7.48 (m, 4H), 7.37–7.24 (m, 2H), 7.17 (s, 1H).

2-(naphthalen-2-yl)benzo[b]thiophene (11i)<sup>[20]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.17 (s, 1H), 7.94–7.81 (m, 6H), 7.70 (s, 1H), 7.58–7.48 (m, 2H), 7.43–7.33 (m, 2H).

#### 2-(4-chlorophenyl)benzofuran (11j)<sup>[24]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.82 (d, J = 9.0 Hz, 2H), 7.64-7.51 (m, 2H), 7.44 (d, J = 9.0 Hz, 2H), 7.35-7.22 (m, 2H), 7.04 (s, 1H).

ethyl 4-(furan-2-yl)benzoate (11k)<sup>[5,25,26]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.55–7.53 (m, 1H), 6.81–6.78 (m, 1H), 6.55–6.50 (m, 1H), 4.40 (q, *J* = 8.0 Hz, 2H), 1.42 (t, *J* = 8.0 Hz, 3H).

ethyl 4-(thiophen-2-yl)benzoate (111)<sup>[5,26]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 9.0 Hz, 2H), 7.69 (d, J = 9.0 Hz, 2H), 7.45–7.36 (m, 2H), 7.16–7.11 (m, 1H), 4.40 (q, J = 6.0 Hz, 2H), 1.43 (t, J = 6.0Hz, 3H).

4-(furan-2-yl)benzaldehyde (11m)<sup>[25]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  10.01 (s, 1H), 7.92 (d, *J* = 9.0 Hz, 2H), 7.84 (d, *J* = 9.0 Hz, 2H), 7.58–7.56 (m, 1H), 6.88–6.86 (m, 1H), 6.57–6.53 (m, 1H).

4-(thiophen-2-yl)benzaldehyde (11n)<sup>[23]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 10.02 (s, 1H), 7.91 (d, J = 6.0 Hz, 2H), 7.79 (d, J = 6.0 Hz, 2H), 7.50–7.47 (m, 1H), 7.44–7.40 (m, 1H), 7.18–7.13 (m, 1H).

2-(4-nitrophenyl)furan (110)<sup>[25]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (d, J = 9.0 Hz, 2H), 7.82 (d, J = 9.0 Hz, 2H), 7.61–7.58 (m, 1H), 6.92–6.88 (m, 1H), 6.59–6.56 (m, 1H).

2-(4-nitrophenyl)thiophene (11p)<sup>[26]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.26 (d, *J* = 9.0 Hz, 2H), 7.77 (d, *J* = 9.0 Hz, 2H), 7.51–7.44 (m, 2H), 7.20–7.15 (m, 1H).

2-(naphthalen-2-yl)furan (11q)<sup>[6]</sup>



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.15 (s, 1H), 7.88–7.75 (m, 4H), 7.54–7.42 (m, 3H), 6.79–6.76 (m, 1H), 6.54–6.51 (m, 1H).

2-(naphthalen-2-yl)thiophene (11r)<sup>[27]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.15 (s, 1H), 7.88–7.75 (m, 4H), 7.54–7.42 (m, 3H), 6.79–6.76 (m, 1H), 6.54–6.51 (m, 1H).

# 4-(benzofuran-2-yl)benzonitrile (11s)<sup>[18,25]</sup>



<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, J = 9.0 Hz, 2H), 7.75 (d, J = 9.0 Hz, 2H), 7.68–7.53 (m, 2H), 7.41–7.28 (m, 2H), 7.20 (s, 1H).

#### References

- 1. J. Guan, G.-J. Wu, F.-S. Han, Chem. Eur. J. 2014, 20, 3301.
- 2. B.-T. Guan, Y. Wang, B.-J. Li, D.-G. Yu, Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 14468.
- 3. C.-H. Cho, H.-S. Yun, K. Park, J. Org. Chem. 2003, 68, 3017.
- 4. W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, J. Org. Chem. 2010, 75, 5109.
- 5. X.-Q. Zhang, Z.-X. Wang, J. Org. Chem. 2012, 77, 3658.
- H. Chen, Z. Huang, X. Hu, G. Tang, P. Xu, Y. Zhao, C.-H. Cheng, J. Org. Chem. 2011, 76, 2338.
- 7. B. H. Lipshutz, T. B. Petersen, A. R. Abela, Org. Lett. 2008, 10, 1333.
- P. Leowanawat, N. Zhang, A.-M. Resmerita, B. M. Rosen, V. Percec, J. Org. Chem. 2011, 76, 9946.
- 9. V. Papoian, T. Minehan, J. Org. Chem. 2008, 73, 7376.
- 10. W. Miao, T. H. Chan, Org. Lett. 2003, 5, 5003.
- 11. S. K. Gurung, S. Thapa, A. Kafle, D. A. Dickie, R. Giri, Org. Lett. 2014, 16, 1264.
- 12. D. Ghosh, J.-Y. Lee, C.-Y. Liu, Y.-H. Chiang, H. M. Lee, Adv. Synth. Catal. 2014, 356, 406.
- 13. B. Bhayana, B. P. Fors, S. L. Buchwald, Org. Lett. 2009, 11, 3954.
- D. Qiu, S. Wang, S. Tang, H. Meng, L. Jin, F. Mo, Y. Zhang, J. Wang, J. Org. Chem. 2014, 79, 1979.
- 15. J. de M. Muñoz, J. Alcázar, A. De la Hoz, A. Díaz-Ortic, Adv. Synth. Catal. 2012, 354, 3456.
- 16. S. Yamada, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 2215.
- 17. L. Yin, Z.-H. Zhang, Y.-M. Wang, Tetrahedron 2006, 62, 9359.
- 18. S. E. Denmark, R. C. Smith, W.-T. T. Chang, J. M. Muhuhi, J. Am. Chem. Soc. 2009, 131, 3104.
- 19. S. Nakatani, M. Ikura, S. Yamamoto, Y. Nishita, S. Itadani, H. Habashita, T. Sugiura, K. Ogawa, H. Ohno, K. Takahashi, H. Nakai, M. Toda, *Bioorg. Med. Chem.* **2006**, *14*, 5402.
- 20. B. Liégault, D. Lapointe, L. Caron, A. Vlassova, K. Fagnou, J. Org. Chem. 2009, 74, 1826.
- 21. I. Kondolff, H. Doucet, M. Santelli, J. Heterocyclic. Chem. 2008, 45, 109.
- 22. L. Zhao, C. Bruneau, H. Doucet, Tetrahedron 2013, 69, 7082.
- 23. M. Baghbanzadeh, C. Pilger, C. O. Kappe, J. Org. Chem. 2011, 76, 8138.
- 24. X. Wang, M. Liu, L.Xu, Q. Wang, J. Chen, J. Ding, H. Wu, J. Org. Chem. 2013, 78, 5273.
- 25. G. A. Molander, B. Canturk, L. E. Kennedy, J. Org. Chem. 2009, 74, 973.
- 26. D. P. Hari, P. Schroll, B. König, J. Am. Chem. Soc. 2012, 134, 2958.
- 27. M. E. Budén, J. F. Guastavino, R. A. Rossi, Org. Lett. 2013, 15, 1174.



Figure S2.<sup>1</sup>H -NMR spectra of 7b



Figure S4. <sup>1</sup>H -NMR spectra of 7d



Figure S6. <sup>1</sup>H -NMR spectra of 7f











Figure S12. <sup>1</sup>H -NMR spectra of 7I



Figure S14.<sup>13</sup>C -NMR spectra of 7m



Figure S16.<sup>1</sup>H -NMR spectra of 70



Figure S18.<sup>1</sup>H -NMR spectra of 7q



Figure S20. <sup>1</sup>H -NMR spectra of 7s







**).**0 **9.**5



Figure S24. <sup>1</sup>H -NMR spectra of 7w



Figure S26.<sup>1</sup>H -NMR spectra of 7y



Figure S28. <sup>1</sup>H -NMR spectra of 7aa















Figure S36. <sup>1</sup>H -NMR spectra of 10e



Figure S38. <sup>1</sup>H -NMR spectra of 10f











Figure S44. <sup>1</sup>H -NMR spectra of 11e



Figure S46. <sup>1</sup>H -NMR spectra of 11g























Figure S58. <sup>1</sup>H -NMR spectra of 11s