Supporting Information

In Silico Studies on the Origin of Selective Uptake of Carbon dioxide with Cucurbit[7]uril Amorphous Material

Debashis Sahu and Bishwajit Ganguly*

Computation and Simulation Unit, Analytical Discipline & Centralized Instrument Facility, and Academy of Scientific and Innovative Research, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India

*E-mail: ganguly@csmcri.org. Fax: +91-278-2567562

Contents:

- **1.** Figure S1: M06-2X/6-31G(d) calculated binding enthalpies of CO₂, N₂ and CH₄ at the outer surface of the CB[7]uril.
- Figure S2: M06-2X/6-31G(d) calculated binding enthalpies (kcal/mol) of N₂ and CH₄ in presence of CO₂ inside the CB[7] cavity.
- **3.** Table S1: M06-2X/6-31G(d) calculated free energies of single CO₂, N₂ and CH₄ gas molecule inside the CB[7] cavity.
- 4. Table S2: Calculated binding enthalpies of single and double gas molecules inside the CB[7] cavity at PBEPBE/6-31G(d) and M06-2X-D3/6-31G(d) levels of theory.

Figure S1: M06-2X/6-31G(d) calculated binding enthalpies (kcal/mol) of CO₂, N₂ and CH₄ towards CB[7]uril and their corresponding average binding enthalpies (H_b) (kcal/mol).

Figure S2: M06-2X/6-31G(d) calculated binding enthalpies (kcal/mol) of N_2 and CH_4 in presence of CO₂ inside the CB[7] cavity. The energies are in kcal/mol.

Table S1: M06-2X/6-31G(d) calculated free energies, Δ G (kcal/mol) of single and double gas molecule(s) (CO₂, N₂ and CH₄) inside the CB[7] cavity at 273 K and 298 K.

	ΔG (273K)	ΔG (298K)
1 CO ₂ inside CB[7]	0.8	1.6
1 N ₂ inside CB[7]	3.6	4.0
1 CH ₄ inside CB[7]	2.3	2.9
2 CO_2 inside $CB[7]$	1.6	3.4
2 N ₂ inside CB[7]	4.3	5.6
2 CH ₄ inside CB[7]	5.8	7.3

Table S2: Calculated adsorption enthalpies (Δ H, kcal/mol) of single and double gas molecules (CO₂, N₂ and CH₄) inside the CB[7] cavity at PBEPBE/6-31G(d) and M06-2X-D3/6-31G(d) levels of theory.

	<mark>∆H</mark> [PBEPBE/6-31G(d)]	ΔH [M06-2X-D3/6-31G(d)]
1 CO ₂ inside CB[7]	-3.1	-10.0
1 N ₂ inside CB[7]	-1.3	-5.7
1 CH ₄ inside CB[7]	-1.7	-6.6
2 CO ₂ inside CB[7]	-6.3	-20.2
2 N ₂ inside CB[7]	-2.8	-11.8
2 CH ₄ inside CB[7]	-2.7	-13.1