Gold nanoclusters based dual-emission hollow TiO₂ microsphere for ratiometic optical thermometry

Chuanxi Wang,*
a Yijun Huang,* Huihui Lin,* Zhenzhu Xu,* Jiapeng Wu,* Mark G. Humphrey
b and Chi Zhang**

^aChina-Australia Joint Research Centre for Functional Molecular Materials, School

of Chemical & Material Engineering, Jiangnan University, Wuxi 214122, P. R. China

^bResearch School of Chemistry, Australian National University, Canberra, ACT 0200,

Australia

E-mail address: <u>chizhang@jiangnan.edu.cn</u> (C. Zhang); w<u>angcx@jiangnan.edu.cn</u> (C. X. Wang)

Fig S1. Photographs of resultant CDs in chloroform solution (a) and resultant CDs/TiO_2 hollow microspheres in aqueous solution (b).

Fig S2. The size distribution of (a) CDs, the average size was 2.5 nm; (b) AuNCs, the average size was 2.1 nm

Fig S3. SEM image of resultant CDs/TiO₂ hollow microspheres

Fig S4. Fluorescence spectra of (a) TiO_2 microspheres and (b) dual-emission fluorescent hollow microspheres at various concentrations.

Fig S5. X–ray photoelectron spectroscopy (XPS) spectra show the binding energy of Au 4f (a) and C 1s (b) of dual-emission nanosensor.

Fig S6. The fluorescent stability of dual-emission fluorescent nanosensor: a, photostability of as-prepared nanosensor radiated by a 450 W Xe light at various time; b, the pH stability of nanosensor in various pH values; c, the metal stability of nanosensor in various metal ions with the concentration of 200 mM.

Fig S7. PL intensity upon the cyclic switching of dual-emission fluorescent nanosensor under alternating conditions between 20 °C and 60 °C.

Fig S8. a, Fluorescence emission spectra of dual-emission nanosensor for various temperatures in the range 20 °C to 45 °C (top to bottom) in the PBS solution (pH=7.4); b, the ratio of the intensity at 596 nm and 436 nm (I_{596}/I_{436}) is plotted versus temperature.