Supporting information

Chitosan Assisted Synthesis of 3D Graphene@Au Nanowalls Composites:

Catalytic Reduction of 4–nitrophenol

Zhuo Ma,^c Yunfeng Qiu,^{a,b*} Yanmin Huang,^b Feng Gao,^b and PingAn Hu^{b*}

^a State Key Laboratory of Urban Water Resource and Environment, Harbin Institute

of Technology, Harbin 150090, China. Corresponding author: Fax: +86 451

86403583, E-mail: <u>qiuyf@hit.edu.cn</u> (Y. Qiu).

^b Key Lab of Microsystem and Microstructure, Ministry of Education, Harbin Institute of Technology, No. 2 YiKuang Street, Harbin 150080, PR China. Corresponding author: Fax: +86 451 86403583, E-mail address: <u>hupa@hit.edu.cn (P. Hu)</u>.

^c School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin, Heilongjiang, 150001, P.R. China.

Figure S1. XPS spectrum of (a) 3DG and (b) magnification of Ni2p peak, implying negligible nickel residues (0.33 wt%) left on the surface of 3DG after thoroughly washing process. The peaks at ~100 eV (Si 2p) and ~ 150 eV (Si 2s) result from the underlying silicon substrate used to analyze samples.

Figure S2. (a and c) Low-magnification and (b and d) high-magnification SEM images of 3DG@CS@Au synthesized in the presence of 0.05 mg/mL HAuCl₄ (top panel) and 1 mg/mL HAuCl₄ (bottom panel), respectively.

Figure S3. (a) SEM images of naked nickel foam surface. (b) Low-magnification and

(c) high-magnification SEM images of Au aggregates on the surface of nickel foam.

Figure S4. SEM images of irregular gold dendrites from low to high magnification.

Figure S5. SEM image of 3DG@CS@AuNWs from low to high magnification after tenth recycle.

Figure S6. Mass spectra of 4-AP measured by Agilent Technologies 6520 series Accurate Mass Quadrupole Time-of-Flight (HPLC-Q-TOF). Inset is the chemical analysis from ChemBioDraw software.

 K_{app} (S⁻¹) Ref. Entry Catalysts Without catalyst 4.31×10^{-5} 1 This work 2.33×10^{-4} 2 Nickel foam This work 6.97×10^{-5} 3 3DG This work 2.18×10^{-4} 4 NF@Au This work 6.1×10^{-3} 5 This work 3DG@Au 6 3DG@CS@Au 1.23×10^{-2} This work 1 6.65×10^{-2} 7 POMs@Ag 5.61×10^{-2} Au NPs/chitosan 2 8 4.71×10^{-2} Au NPs/chitosan/Fe₃O₄ 2 9 3 5.9×10^{-3} 10 AuNPs@CSNFs 4 5.23×10^{-3} 11 Ag-M45 5 1.31×10^{-3} 12 $Ag@Me_{10}CB[5]$ 1.71×10^{-2} Ag/MFC 6 13 3.8×10^{-3} Pt-Au pNDs/RGOs 7 14 0.7×10^{-3} Pt black 7 15 0.3×10^{-3} Au NCs 7 16 4.57×10^{-3} Au@Ag nanorods 8 17 1.33×10^{-3} Pt-Au ANCs 9 18 2.46×10^{-4} Cat_3Au_1 10 19 3.95×10^{-3} Cu/Ag NPs 11 20 1.5×10^{-3} Cu/Ag NPs 12 21

Table S1. Comparison of the catalytic performances of 3DG@CS@AuNWs, 3DG@Au, nickel foam@Au, 3DG, nickel foam, and without catalyst for the reduction of 4-NP under identical conditions. And other reported catalysts are also listed for comparison.

References.

- 1. G.-G. Gao, C.-Y. Song, X.-M. Zong, D.-F. Chai, H. Liu, Y.-L. Zou, J.-X. Liu and Y.-F. Qiu, *CrystEngComm*, 2014, **16**, 5150-5158.
- 2. Y. Qiu, Z. Ma and P. Hu, J. Mater. Chem. A, 2014, 2, 13471-13478.
- 3. H. Koga, E. Tokunaga, M. Hidaka, Y. Umemura, T. Saito, A. Isogai and T. Kitaoka, *Chem. Commun.*, 2010, **46**, 8567-8569.
- 4. B. Duan, F. Liu, M. He and L. Zhang, *Green Chemistry*, 2014, **16**, 2835-2845.
- 5. H.-F. Li, J. Lü, J.-X. Lin and R. Cao, *Inorg. Chem.*, 2014, **53**, 5692-5697.
- 6. M. Zhu, C. Wang, D. Meng and G. Diao, J. Mater. Chem. A, 2013, 1, 2118-2125.

- 7. J.-J. Lv, A.-J. Wang, X. Ma, R.-Y. Xiang, J.-R. Chen and J.-J. Feng, *J.Mater. Chem. A*, 2015, **3**, 290-296.
- 8. X. Guo, Q. Zhang, Y. Sun, Q. Zhao and J. Yang, ACS Nano, 2012, 6, 1165-1175.
- 9. G. Fu, L. Ding, Y. Chen, J. Lin, Y. Tang and T. Lu, *CrystEngComm*, 2014, **16**, 1606-1610.
- M. Raula, D. Maity, M. H. Rashid and T. K. Mandal, J. Mater. Chem., 2012, 22, 18335-18344.
- W. Wu, M. Lei, S. Yang, L. Zhou, L. Liu, X. Xiao, C. Jiang and V. A. L. Roy, J. Mater.Chem. A, 2015, 3, 3450-3455.
- 12. Y. Mei, Y. Lu, F. Polzer, M. Ballauff and M. Drechsler, *Chem. Mater.*, 2007, **19**, 1062-1069.